Hands-on teaching engineering

Level 3 Level 4 Level 5
Hands-on teaching engineering

In this catalogue, we present a comprehensive overview of our innovative demonstration and experimental units.

This catalogue covers the following engineering courses:

- Chemical engineering
- Civil engineering
- Manufacturing engineering
- Mechanical engineering
- Computer engineering
- Mechatronics engineering
- Environmental engineering
What is engineering?

Engineering is the practical application of science and mathematics to solve problems, and it is everywhere in the world around you. From the start to the end of each day, engineering technologies improve the ways that we communicate, work, travel, stay healthy and entertain ourselves. Engineers influence every aspect of modern life and it’s likely that today you will have already relied on the expertise of one or more engineers. Perhaps you woke to a DAB clock radio, or used a train or a bus? Maybe you have listened to an iPod? Or watched television? Did you wash your hair today? Do you have a mobile phone in your pocket or trainers on your feet? These have all been designed, developed and manufactured by engineers.

Engineers are problem-solvers who want to make things work more efficiently and quickly, and less expensively. From computer chips and satellites to medical devices and renewable energy technologies, engineering makes our modern life possible.

What does the industry want of future employees?

Priorities: 1st attitudes, 2nd skills, 3rd knowledge

What capabilities does an engineer need in professional life to meet these priorities?

Technology

<table>
<thead>
<tr>
<th></th>
<th>Materials science</th>
<th>Mechanics</th>
<th>Thermo dynamics</th>
<th>Electrical engineering</th>
<th>Metrology</th>
<th>Process engineering</th>
<th>Control engineering</th>
<th>Computer sciences</th>
<th>Fluid dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legislation standardization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management: business operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transferable skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Employability skills

Students need both good qualifications and employability skills to enhance their career prospects and personal development. This catalogue suggests ways to support lecturers of colleges and universities in their STEM education. We have structured this catalogue in accordance with needs of employability. Please find details concerning structure and contents on the following pages.
Engineering education in level 3 - 5

STEM education

- **Level 3**
 - GCSE (grades A*-C) or equivalent
 - Apprenticeship
 - NVQ level 3
 - BTEC award, certificate and diploma level 3
 - National Diploma
 - Extended Diploma
 + various other diplomas and certificates

- **Level 4**
 - First year at University
 - Higher National Certificate (HNC)
 - NVQ level 4
 - BTEC Professional award, certificate and diploma level 4
 + various other professional diplomas and certificates

- **Level 5**
 - Second year at University
 - Foundation Degree
 - Higher National Diploma (HND)
 - NVQ level 4
 - BTEC Professional award, certificate and diploma level 5
 + various other professional diplomas and certificates

- **Level 6**
 - Bachelor's Degree
 - Graduate Certificate / Diploma
 - VQ level 6
 - BTEC Advanced award, certificate and diploma level 6
 + various other professional diplomas and certificates

- **Level 7**
 - Master's Degree
 - Postgraduate Certificate / Diploma
 - NVQ level 5
 - BTEC Advanced award, certificate and diploma level 7
 + various other professional diplomas and certificates

- **Level 8**
 - Doctorates
 + various other professional diplomas and certificates

Hands-on teaching engineering

This catalogue offers devices covering levels 3–5 in engineering courses:

- engineering
- chemical engineering
- civil engineering
- manufacturing engineering
- mechanical engineering
- computer engineering
- mechatronics engineering
- environmental engineering

This catalogue is based on the information of City & Guilds Level 3 qualifications and BTEC Pearson, the UK's largest awarding body offering academic and vocational qualifications that are globally recognised and benchmarked.

Table of contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>002</td>
</tr>
<tr>
<td>1. Mechanical principles</td>
<td>010</td>
</tr>
<tr>
<td>2. Materials, properties and testing</td>
<td>030</td>
</tr>
<tr>
<td>3. Engineering design</td>
<td>036</td>
</tr>
<tr>
<td>4. Maintenance engineering</td>
<td>054</td>
</tr>
<tr>
<td>5. Thermodynamics, heat engines and thermofluids</td>
<td>074</td>
</tr>
<tr>
<td>6. Heating, ventilation and air conditioning (HVAC)</td>
<td>102</td>
</tr>
<tr>
<td>7. Fluid mechanics</td>
<td>110</td>
</tr>
<tr>
<td>8. Industrial services and systems</td>
<td>126</td>
</tr>
<tr>
<td>9. Renewable energy</td>
<td>148</td>
</tr>
<tr>
<td>10. Mechatronics, electrical and electronic principles, fault finding</td>
<td>166</td>
</tr>
<tr>
<td>11. Electro, pneumatic and hydraulic systems</td>
<td>174</td>
</tr>
<tr>
<td>12. Instrumentation, control systems, automation, and distributed control systems</td>
<td>180</td>
</tr>
<tr>
<td>13. Digitisation</td>
<td>186</td>
</tr>
<tr>
<td>Allocation chart: unit – chapter</td>
<td>206</td>
</tr>
<tr>
<td>Product overview</td>
<td>208</td>
</tr>
</tbody>
</table>
Skills development

Beside the pure knowledge and understanding of the fundamental principles, also skills development can be integrated into the curriculum. Skills can be divided into cognitive, applied and transferable skills. How can GUNT support to implement these skills into the learning process?

<table>
<thead>
<tr>
<th>Skills</th>
<th>Examples</th>
<th>How can GUNT support to implement these skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>verbal ability</td>
<td>using the correct terminology, e.g. process schematics, datasheets, manuals and guidelines</td>
<td>integrate theory and practice through the investigation, evaluation and development of practices and products in the workplace: experiments and data evaluation of GUNT devices</td>
</tr>
<tr>
<td>spatial ability</td>
<td>interpretation of engineering drawings, cut away models, assembly exercises etc.</td>
<td>solve and conduct tests and experiments in a team, interpretation of distribution and delegation of tasks</td>
</tr>
<tr>
<td>planning</td>
<td>conducting experiments with GUNT devices: apply project management skills and techniques for reporting, planning, control and problem-solving</td>
<td>presentation of experimental data and experiment evaluation in oral and written manner</td>
</tr>
<tr>
<td>hand-eye coordinatio</td>
<td>assembly exercises, conversion of equipment for various tests</td>
<td>use quantitative skills to manipulate, evaluate and verify data</td>
</tr>
<tr>
<td>recognition</td>
<td>GUNT uses industrial components to achieve the recognition effect</td>
<td>identifying electrical faults in air conditioning or refrigeration systems from GUNT</td>
</tr>
</tbody>
</table>

Applied skills

- Team working
- Communication skills
- Problem solving
- Analytics

Transferable skills

- Communication skills
- Problem solving
- Analytics
- Planning
- Hand-eye coordination
- Recognition

Cognitive skills

- Verbal ability
- Spatial ability
- Planning
- Hand-eye coordination
- Recognition
Mechanical principles

Mechanical principles have been crucial for engineers to convert the energy produced by burning oil and gas into systems to propel, steer and stop our automobiles, aircraft and ships, amongst thousands of other applications. The knowledge and application of these mechanical principles is still the essential underpinning science of all machines in use today or being developed into the latest technology.
Statics

Fundamentals of Statics
- Demonstration of force and moment equilibrium in a static system
- Accumulation and resolution of forces with force parallelogram
- Equilibrium of forces
- Law of levers, determination of moments and equilibrium of moments
- Combined lever systems
- Forces in bearings
- Deflection and resolution of force by fixed and free pulley

Forces in a Truss
- Calculation of support forces
- Determining internal reactions
- Different load cases: point load, line load and moving load

Bridges, Beams, Arches and Cables
- Calculation of support forces
- Determining internal reactions
- Different load cases: point load, line load and moving load

Static and Kinetic Friction
- Static and dynamic friction
- Demonstration of frictional forces
- Determining the coefficients of friction

Graphical and Experimental Determination of Forces in a Planar Central Force System
- Graphical breakdown of forces by force parallelogram
- Determination of the bar forces on various jib forms
- Comparison of: measuring result – calculation – graphical method

Elastic Deflection of a Helical Spring
- (Hooke’s law)

Dynamic Friction as a Function of the Normal Force, Contact Area and Surface Properties of the Friction Body
- Determination of the friction coefficient
- Rolling friction
- Forces on the inclined plane

Forces on the Inclined Plane
- Setup and principle of pulley blocks with 4 pulleys and with 6 pulleys; differential pulley block
- Principle of “simple machines”: force transmission, lifting work and potential energy
- Transmission ratio of speed and moment on a single-stage gear
- Influence of intermediate wheels on the direction of rotation
- Transmission ratio on a two-stage gear
- Conversion of rotation into linear motion and vice versa

Demonstration of Force and Moment Equilibrium in a Static System
- Accumulation and resolution of forces with force parallelogram
- Equilibrium of forces
- Law of levers, determination of moments and equilibrium of moments
- Combined lever systems
- Forces in bearings
- Deflection and resolution of force by fixed and free pulley
Mechanical principles
Mechanical properties

Elastic deformations
WP 950
Deformation of straight beams
Elastic lines for statically determinate (left) and indeterminate (right) cases
1 single-span beam with fixed and movable support, 2 cantilever, 3 beam with 3 fixed supports, 4 propped cantilever

Part of the SE 110-Series: GUNT-Structure Line
SE 110.14 Elastic line of a beam
SE 110.47 Methods to determine the elastic line

Buckling and stability
WP 121 Demonstration of Euler buckling
1 weight, 2 pinned support, 3 bar, 4 backing wall with grid pattern, 5 fixed support, 6 mount for weight

Part of the SE 110-Series: GUNT-Structure Line
SE 110.57 Buckling of bars
SE 110.19 Investigation of simple stability problems

Compound stress
WP 130 Verification of stress hypotheses
Multiaxial loading of samples by bending and torsion
- generation of multi-axial loads on test samples made of ductile metals:
 steel, copper, brass, aluminium
- generation of various load moments:
 pure bending moment, pure twisting moment, combined bending moment and twisting moment
- determination of the yield point
- verification of the Rankine yield criterion
- verification of the Tresca yield criterion
- representation in Mohr’s circle of stresses and strains

Experimental stress and strain analysis
FL 100 Strain gauge training system
Basic introduction to measurement with strain gauges for tension, bending and torsion

Complete equipment for practising manual handling of strain gauge technology
FL 101 Strain gauge application set
FL 120 Stress and strain analysis on a membrane
Investigation of deflection and strain of a membrane under internal pressure; membrane with strain gauge application

FL 130 Stress and strain analysis on a thin-walled cylinder
Investigation of axial and circumferential stress in a thin-walled cylinder under internal pressure

FL 140 Stress and strain analysis on a thick-walled cylinder
Triaxial stress state in the cylinder wall; cylinder with strain gauge application on surface and in wall

FL 200 Photoelastic experiments with a transmission polariscope
Visualisation of mechanical stresses in models subject to varying loads

Model of a notched bar (FL 200.05) in monochromatic light
Model FL 200.05 in white light
Mechanical power transmission systems

Transmission or conversion elements

Complex machine elements used to alter the motion variables of path, velocity and acceleration are known as conversion elements or gears. In a gear drive, positively locking gears transfer the rotary motion from one shaft to another. In a traction drive, the rotary motion is transferred between two shafts by means of a traction gear. Here, a distinction is made between non-positive traction drives (belt drive) and positive traction drives (chain or toothed belt drive).

Fundamentals

- GL 100 Principle of gear units
- GL 110 Cam mechanism
- TM 123 spur gear unit
- TM 124 Worm gear unit
- TM 125 Cable winch

- GL 430 Assembly control gear
- GL 200 Lathe gear
- AT 200 Determination of gear efficiency

Advanced

- Versatile assembly exercise for various step and gear units
 - familiarisation with main components and forms of mechanical gear engineering
 - step pulley gear
 - sliding gear drive
 - Norton gear
 - tumbler gear
 - change gear
 - cam box (tripping device for lathe)
 - calculations on mechanical gears
 - practical setup of different gears, associated with setup and configuration exercises
 - read and understand engineering drawings, familiarisation with technical terms

- Safe and clear demonstration of function of the gears on a conventional lathe
 - investigation of all essential gear functions of a lathe
 - main gear
 - change gear
 - tumbler gear
 - feed gear (Norton gear)

- Test system for determining mechanical drive and braking efficiency for spur and worm gears
 - determination of the mechanical efficiency of gears by comparing the mechanical driving and braking power for
 - spur gear, two-stage
 - worm gear
 - plot the torque/current characteristic curve for a magnetic particle brake
 - drive and control engineering
Dynamics and Vibrations

Kinetics

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM 610</td>
<td>Rotational inertia</td>
</tr>
<tr>
<td>TM 611</td>
<td>Rolling disk on inclined plane</td>
</tr>
<tr>
<td>TM 612</td>
<td>Kinetic model: flywheel</td>
</tr>
<tr>
<td>TM 630</td>
<td>Gyroscope</td>
</tr>
<tr>
<td>TM 632</td>
<td>Centrifugal governor</td>
</tr>
<tr>
<td>GL 210</td>
<td>Dynamic behaviour of multistage spur gears</td>
</tr>
<tr>
<td>GL 212</td>
<td>Dynamic behaviour of multistage planetary gears</td>
</tr>
<tr>
<td>TM 605</td>
<td>Coriolis force</td>
</tr>
</tbody>
</table>

- **Moments of inertia of different mass arrangements and bodies**
- **Determining moment of inertia on rotating masses by rolling down an inclined plane and by performing a pendulum test**
- **Experimental determination of the moment of mass inertia of a flywheel**
- **Laws on the behaviour of centrifugal forces on rotating masses**
- **Experimental verification of the laws of gyroscopes**
- **Characteristic curves of different centrifugal force governors**
- **Investigation of the dynamics of rotation of one-, two- and three-stage spur gear units**
- **Investigation of rotational dynamics of a two-stage epicyclic gear with three planetary gears each**
- **Demonstration of the Coriolis force in rotating reference system**

Kinematics

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB 110</td>
<td>Kinematic model: crank mechanism</td>
</tr>
<tr>
<td>KB 120</td>
<td>Kinematic model: crank slider</td>
</tr>
<tr>
<td>KB 130</td>
<td>Kinematic model: four-joint link</td>
</tr>
<tr>
<td>KB 140</td>
<td>Kinematic model: Whitworth quick return mechanism</td>
</tr>
<tr>
<td>KB 150</td>
<td>Kinematic model: Hooke's coupling</td>
</tr>
<tr>
<td>KB 160</td>
<td>Kinematic model: Ackermann steering mechanism</td>
</tr>
<tr>
<td>GL 105</td>
<td>Kinematic model: gear drive</td>
</tr>
</tbody>
</table>

- **Conversion of rotary motion into oscillating motion**
- **Conversion of a uniform rotary motion into a pure harmonic reciprocating motion**
- **Conversion of rotary motion into oscillating motion with slow feed and quick return**
- **Phenomenon of the gimbal error in Hooke’s couplings and how to avoid it**
- **Determining the lead angle of a steering trapezoid**
- **Investigation of transmission ratios on spur gear units**

Vibrations

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM 161</td>
<td>Rod and gravity pendulum</td>
</tr>
<tr>
<td>TM 162</td>
<td>Bifilar/trifilar suspension of pendulums</td>
</tr>
<tr>
<td>TM 163</td>
<td>Torsional vibrations</td>
</tr>
<tr>
<td>TM 164</td>
<td>Coil spring vibrations</td>
</tr>
</tbody>
</table>

- **Comparison of physical and mathematical pendulum**
- **Moments of inertia of different bodies in a rotary pendulum experiment**
- **Determination of the oscillation period depending on torsion wire length, diameter and rotating mass**
- **Investigation of vibrations on a spiral spring rotating mass system**
Vibration theory requires a good understanding of mathematical and physical relations. In technical professions, knowledge of vibration theory is essential. Illustrative experiments are offered to make it easier for students to understand the principles.

The TM 150 vibration trainer developed especially for this demanding field allows conducting experiments on a variety of vibration-related topics:

- pendulum swings
- spring-mass systems
- free and forced vibration
- beam vibrations
- dual-mass systems and dynamic vibration absorbing effects

TM 150 Vibration trainer

To study pendulums, the trainer includes different pendulum versions and a pendulum bearing:

- 2 gravity pendulums with steel and wooden ball
- 2 rod pendulums with adjustable masses and knife-edge bearings
- 1 wooden physical pendulum with adjustable masses and knife-edge bearing
- 1 pendulum with biaxial suspension and different masses

Investigation of forced vibration by an imbalance exciter; controllable frequency and imbalance exciter amplitude

Investigation of a spring-mass system with
- height-adjustable spring holder
- bracket for holding different masses
- helical springs with varying spring stiffness
- vernier caliper to measure deflection

Two bar types available in the bar-type oscillator:

- Rigid bar as discrete rotational oscillator, fixed support, suspension on a helical spring. A breadboard allows the attachment of springs, exciters and absorbers in a wide variety of reproducible configurations.
- Elastic bar as oscillating continuum, either fixed or movable support, ball-bearing-mounted for minimal system damping

Investigation of damped vibration via an adjustable viscous damper with very low Coulomb friction

Tunable vibration absorber for investigating vibration-absorbing effects

- TM 150.20 System for data acquisition
 - analysis of vibration signals on a PC
 - frequency and phase response curves
 - all principal functions of a digital storage oscilloscope
 - frequency spectra of the signals
 - comprising software, a displacement sensor, a reference sensor and an interface box
 - the interface box supplies up to three sensors, prepares their measuring signals for the PC and offers them to three analogue outputs for display

- TM 150.02 Free and damped torsional vibrations
 - Torsional vibrations play a key role in drive systems and must be controlled to avoid damage. The TM 150.02 accessories set can be used to produce free and damped torsional vibrations and to study the effects of torsional stiffness, mass and damping on frequency and amplitude.

The range of experiments includes
- torsional stiffness
- mass moment of inertia
- free torsional vibrations
- damped torsional vibrations
- oscillator with several masses

All parts of the system are ready at hand and securely housed in a storage system.

Torsional vibrations

- oscillator with several masses
- free springs with varying spring stiffness
- adjustable viscous damper

- TM 150.02 Free and damped torsional vibrations

- TM 150.20 System for data acquisition
Course: mechanical principles

GUNT-Structure Line

A course on engineering mechanics
Course: mechanical principles

In GUNT, the term “structure” refers to a supporting structure or a building structure. The term “line” refers to a GUNT series of units. The GUNT-Structure Line is a series of units that has been specially developed by GUNT to support teaching basic engineering principles with practical exercises.

The GUNT-Structure Line offers the following advantages:

- meaningful compilation of experiment subjects
- wide range of experiments: one frame is combined with different add-on parts
- easy to transport and space-saving storage of the add-on parts thanks to stackable storage systems
- orderliness when conducting experiments, thanks to individual parts being stored in clear foam inserts
- safe storage of small parts such as screws, adapters, or tools in transparent boxes
- stable mounting frame, easy to assemble and disassemble, with rubber feet for secure standing
- easy-to-install add-on parts can be fitted at any point on the frame using adjustable clamping levers

The series of units offers a variety of opportunities to learn about common topics such as equilibrium conditions, forces and deformations or stability and buckling and to develop a more in-depth understanding.

Experiments on statics

SE 110.16 Panoramic arch

Experiments on strength of materials

SE 110.44 Deformation of trusses

SE 110.47 Methods to determine the elastic line

SE 110.50 Cable under dead-weight

SE 110.21 Forces in various single plane trusses

SE 110.19 Investigation of simple stability problems
Didactic concept of the GUNT-Structure Line

The GUNT-Structure Line allows you to build an extensive laboratory on the fundamentals of engineering. In this way, the rather abstract contents of the lecture can be practically simulated and clearly represented through small-group experiments. This promotes students’ long-term learning success. Meanwhile, group participants’ social skills are encouraged in addition to their more technical skills.

Manual experimentation promotes the following capabilities:

- planning experimental series
- setup of experiments
- encouraging abstraction skills
- encouraging manual work and technical ability
- encouraging effective teamwork
- implementing theoretical teaching subjects in the experiment
- developing an understanding of forces and stresses
- evaluating results
- estimating errors

How does manual experimentation promote skills?

- The abstract structural diagram must be implemented in a real experimental setup. This requires imagination, judgement and manual dexterity. Students learn how to technically realise abstract concepts such as clamping or flexible supports. The limits of idealisation are also made clear.

- Terms such as stability and balance of a system are illustrated by the manual application of the load.
- The load on the experimental setups, mainly from weights, gives students a feeling for masses and forces.

- Measuring the deformation using dial gauges provides direct feedback of the load. The factors of slack, friction and the resulting hysteresis – which are almost always present in real systems – can be experienced.

Frame, components and connecting elements are combined into a functioning experimental setup. The points of action for loads, their effect on the support structures and structural elements and the use of fixed and movable supports are tested. This makes the function and the processes in support systems easy to observe and understand and it ensures a lasting learning experience.

A fundamental section with the relevant theory and model-based experiment instructions allow an intensive preparation for the experiment. Sample experiment results allow a qualified assessment of the students’ own results.

Our didactic materials offer excellent support when preparing lessons, when conducting the experiments and when reviewing the experiment.

The software forms a bridge between the mechanical model and the didactic material in paper form. Trusses can be simulated and configured in the software. Similarly, the behaviour of truss systems is reflected in concrete measured values and the bar forces are graphically displayed (SE 110.21, SE 110.22).
Contents of the GUNT-Structure Line

A wide range of experiments with a variety of options

The series of units covers topics such as equilibrium conditions, forces and deformations or stability and buckling.

The units represent self-contained learning units, complementing the experimental units from a topic in terms of the learning objectives. For a complete experimental setup, the components of an experimental unit are assembled in the SE 112 mounting frame.

Equilibrium conditions

SE 110.50 Cable under dead-weight
- determine catenary of a free-hanging cable
- measure sag
- compare calculated and measured values

SE 110.53 Equilibrium in a single plane, statically determinate system
- the main principle of the practical experimentation: free-body diagrams in statics
- calculation of support forces
- application of the 1st and 2nd equilibrium conditions of statics

SE 110.12 Lines of influence on the Gerber beam
- application of the method of sections and the equilibrium conditions of statics to calculate the support forces
- determine the internal reactions under static load

SE 110.16 Parabolic arch
- mechanical fundamentals of the parabolic arch
- differences between statically determinate and statically indeterminate arches
- influence of load on the support forces and deformation of the arch

SE 110.17 Three-hinged arch
- investigation of how the load affects the horizontal thrust in the supports
- determine the influence lines for the supports under a moving load

SE 110.18 Forces on a suspension bridge
- calculate supporting cable force
- observe the effect of internal moments in the carriageway under uneven load

Bridges, beams and arches

SE 110.21 Forces in various single plane trusses
- dependence of bar forces on external forces
- comparison of measuring results with mathematical solutions using the method of joints and Ritter’s method of sections

SE 110.22 Forces in an over-determinate truss
- distribution of forces in a plane truss, depending on the use of a redundant bar
- dependence of bar forces on an external force

SE 110.44 Deformation of trusses
- work-energy theorem and deformation energy
- application of Castigliano’s first theorem for calculating deformation at a defined point
- comparison of the deformations of different trusses under the same load

Forces and deformations in a truss

SE 110.14 Elastic line of a beam
- elastic line under different loads / support conditions
- demonstration of Maxwell-Betti’s theorem

SE 110.47 Methods to determine the elastic line
- principle of virtual work (calculation), Mohr’s analogy (Mohr’s method on an area of moments; graphical approach)
- applying the superposition principle of engineering

SE 110.20 Deformation of frames
- interaction between stress and strain on the frame
- first-order law of elasticity for statically determinate and indeterminate systems

SE 110.29 Torsion of bars
- shear modulus and polar second moment of area
- angle of twist as a function of the clamping length / twisting moment
- influence of torsional stiffness on twist

SE 110.48 Bending test plastic deformation
- load of a bending beam with a point load
- create a force-path diagram

Elastic and permanent deformations

SE 110.19 Investigation of simple stability problems
- determine the buckling force
- investigate buckling behaviour under the influence of additional shear forces or pre-deformation

SE 110.57 Buckling of bars
- investigate buckling behaviour under the influence of different supports, clamps, cross-sections, materials, or additional transverse stress
- test Euler’s theory: buckling on elastic bars
- calculate the expected buckling force with Euler’s formula
- graphical analysis of the deflection and the force

SE 110.58 Free vibrations in a bending beam
- free vibration in a vertical and horizontal bending beam
- determine the natural Rayleigh frequency
- how do clamping length and mass affect the natural frequency
Materials, properties and testing

The world we live in would be a very different place without the sophisticated engineering materials currently available. Many of the things we take for granted, such as telecommunications, air travel, safe and low-cost energy, or modern homes, rely on advanced materials development for their very existence. Successful engineering application and innovation is dependent upon the appropriate use of these materials, and the understanding of their properties.

Topics included in this unit

- Materials, properties and testing

Topics

This unit introduces students to:

- the atomic structure of materials and the way it affects the properties
- physical nature and performance characteristics of common manufacturing materials
- how these properties are tested
- modification by various processing treatments
- problems that occur which can cause materials to fail in service

Learning outcomes

- identify properties and characteristics of engineering materials
- determine the suitability of engineering materials for use in a specified role
- understand and explore the testing methods used to determine physical properties of an engineering material
- test materials to meet given specifications
- recognise and categorise the causes of in-service material failure
A solid understanding of the properties of materials is essential for technical and scientific professions. This knowledge helps select the suitable material, monitor production and processing and ensure the requirements in terms of a component. The materials test provides the necessary data in a reproducible and precisely quantified manner. The tensile test, bending test and hardness test are all part of classic destructive materials testing.

The compact WP 300 experimental unit generates a 20kN test load:
- classic experiments in destructive materials testing
- observation of the experiment in all details and phases
- clear demonstration of relationships between rising forces and change in various materials
- mobile use thanks to compact and lightweight design
- preparation display and storage of data with the WP 300.20 system for data acquisition
Materials, properties and testing

WP 400
Impact test, 25Nm
Classic Charpy notched-bar impact test; specimens with different cross-sections and materials

The compact WP 400 experimental unit generates a 25Nm work capacity
- Charpy notched-bar impact test for quality control and analysis of the fracture behaviour in metallic materials
- Pendulum impact tester based on DIN EN ISO 148-1
- Various safety devices for conducting experiments, e.g. WP 400.50 protective cover for the operating area
- Preparation display and storage with the WP 400.20 system for data acquisition

WP 400.50 Safety cage for pendulum impact tester
WP 400.20 System for data acquisition

WP 140
Fatigue strength test
Fatigue strength of bars subject to cyclic bending load; stress-number (S-N) diagram
- Fatigue strength of bars under reverse bending stress
- Digital counter displays load cycles
- Automatically shuts down when the test bar fractures
- Preparation display and storage with the WP 140.20 system for data acquisition

Analysis of the fracture surface following the fatigue strength test

WP 600
Creep rupture test
Demonstration of typical creep phenomena in various materials
- Simple creep rupture tests with lead and plastic specimens
- Experiments can be conducted at room temperature
- Cooling elements allow experiments to be conducted below room temperature
- Experiments last from a few minutes to an hour

WP 500
Torsion test, 30Nm
Fatigue strength of bars subject to cyclic bending load; stress-number (S-N) diagram
- Fatigue strength of bars under reverse bending stress
- Digital counter displays load cycles
- Automatically shuts down when the test bar fractures
- Preparation display and storage with the WP 140.20 system for data acquisition

Analysis of the fracture surface following the fatigue strength test

WP 400.20 – PC DATA ACQUISITION SYSTEM

In the torsion test, a specimen is clamped at one end and subjected to the load of a steadily increasing moment, known as the twisting moment or torsional moment.

Left: specimen before the load
Right: The twisting moment causes shear stresses in the crosssection of the specimen and a stress state that leads to deformation and ultimately to fracture. The marked red line on the surface indicates the number of revolutions.

Manual torsion testing of different materials to fracture
- Generates the twisting moment by means of a worm gear
- Measure the twisting moment with strain-gauge measuring shaft and encoder for measuring the twisting angle
- The scope of delivery includes GUNT software for analysing the measured values
Engineering design

The tremendous possibilities of the techniques and processes developed by engineers can only be realised by great design. Design turns an idea into a useful artefact, the problem into a solution, or something ugly and inefficient into an elegant, desirable and cost effective everyday object. Without a sound understanding of the design process the engineer works in isolation without the links between theory and the needs of the end user.

For the design of engineering components such as car engine parts, aircraft undercarriages or train brake units, performance and reliability are key. In this unit students will be able to look at that process and see how a customer’s product specification is developed and turned into a final design for manufacture. Students will learn the meaning of the phrases ‘fit, form and function’, and ‘fit for purpose’ and learn to use them when deciding if a particular design is finished.

This unit introduces students to the methodical steps that engineers use in creating functional products and processes; from a design brief to the work, and the stages involved in identifying and justifying a solution to a given engineering need.

Learning outcomes
- understand the process of developing a product design specification
- understand how engineering design solutions meet product design specifications
- introduction to technical terms and technical language
- read and understand technical documentation
- familiarisation with machine elements and standard parts
- develop broad knowledge of assembly technology as a basis for the design of assemblies
- recognise assemblies, understand functions, describe systems
- plan and execute assembly steps and sequences
- familiarisation with typical tools and devices
- check and evaluate work results

Topics
- Engineering drawing
- Cutaway models
- Machine elements
- Assembly exercises

Topics included in this unit
Engineering design and drawing

Engineering design means describing technical products in full, thereby enabling their manufacture. This includes observations and concepts with sketches, calculations and initial drafts, all the way up to lists of parts and drawings with specifications for materials, machining, dimensions and tolerances. The applied principles of engineering design are taught in the engineering design discipline. Engineering design is a central and challenging area of learning within engineering education.

By carefully developing fundamental topics such as statics, strength of materials and dynamics, machine elements, materials testing, descriptive geometry and engineering drawings, students are prepared for subsequent professional activities.

The reading and understanding of engineering drawings is a fundamental element in the development of professional competence in all engineering disciplines.

General arrangement drawing of the bending device TZ 200.01

The components and assembly exercises of GUNT teach:
- the standards-compliant execution of engineering drawings
- the recognition of standardised representations
- the understanding of contexts of individual components

The reading of drawings is illustrated in:
- general arrangement drawings and exploded drawings
- raw casting drawing, production drawings

The types of drawings and their role and content in terms of standardisation are precisely explained.

Regulations and standards in engineering communication

The creation of an engineering drawing, whether manually or computer assisted, follows binding rules – the drafting standards – that do not permit any ambiguity. Drafting standards take account of the standards and recommendations of the ISO (International Organization for Standardization) and are therefore applicable internationally. They include, for example:

- precise identification and use of line styles, hatches and colours as well as the representation of views and sections
- isometric and diametric representation; simplified representation

Dimension inscriptions, tolerance abbreviations
- drawing-sheet formats, title blocks, standard font
- fits; basic terms of tolerances and fits
Engineering design and drawing

Geometric models

Geometric models support the learning process by providing an introduction to technical drawings: from the solid model to the more abstract representation of the three views in a technical drawing. Different solid models are available.

 TZ 100 Engineering drawing: three-dimensional display

TZ 120 Cylindrical work samples with slanted cut-outs

Room corner made of three Plexiglas planes with inlaid drawing and a prismatic model

Top view Side view Front view

TZ 200.07 Lever shears

Function groups of a lever shears:
- Main body
- Shear body
- Stop

TZ 200.06 Drilling jig for an annular disc

Sectional view

TZ 200.71 Assembly of lever shears

Training panels and assembly sets

In addition to the primary learning area of "engineering drawing", it is also possible to deal with topics such as assembly planning and execution as well as measuring exercises.

TZ 100.07 Lever shears

TZ 120.06 Drilling jig for an annular disc

TZ 200.71 Assembly of lever shears

Room corner made of three Plexiglas planes with inlaid drawing and a prismatic model

Top view Side view Front view

Function groups of a lever shears:
- Main body
- Shear body
- Stop

Sectional view

Exploded view

General arrangement drawing
Cutaway models

GL 300.01
Cutaway model: worm gear

Manually operated open samples of various drive components and elements
- view of the details and function of the components
- despite the cut outs the movement functions are completely retained
- operation using a hand crank

These models are fitted to sturdy metal base plates. Lifting handles make the models easier to carry. Technical descriptions and sectional drawings are included so that calculations and design aspects can be used as an educational topic.

The technical drawings are part of the instructional material.
Machine elements

Components of a technical application that fulfill certain functions in structures are known as machine elements. Machine elements can be both single components and assemblies:

- Individual parts such as screws, bolts, or gears
- Assemblies consisting of individual machine elements, such as couplings, ball bearings, transmissions, or valves

An individual machine element always performs the same function, even though it is used in very different structures. Simple machine elements such as screws, cylinder pins, feather keys, or seals are defined according to standards and therefore can be exchanged without difficulty. More complex machine elements such as bearings, couplings, gears, or shafts are standardized in only certain important properties, such as main dimensions or flanges, and as such are not fully interchangeable.
Assembly exercises

Assembly process

In industrial manufacturing, the repeated fashioning of individual prefabricated components and assemblies into a finished product, unit or device is called assembly.

The entire assembly process comprises the assembly operations:

- joining together
- filling
- pressing on and impressing
- joining by moulding
- joining by forming
- welding
- soldering
- bonding
- textile joining

- retaining
- changing quantities
- dividing
- merging
- moving
- turning
- positioning
- securing
- holding
- detaching
- inspecting
- checking

- cleaning
- aligning
- marking
- lubricating

Assembly exercises from GUNT

The assembly exercises from GUNT are part of the GUNT-Practice Line. This series of units has been designed specifically for the areas of assembly, maintenance and repair. Together with cutaway models, these units represent a practical addition to the field of engineering design.

Drive elements and gears

- MT 110
 Assembly station: spur wheel / worm gear mechanism

- MT 110.02
 Assembly spur wheel / worm gear mechanism

- MT 181
 Assembly & maintenance exercise: multistage centrifugal pump

- MT 140.02
 Assembly exercise: piston compressor

Piping assembly, valves and fittings

- HL 980
 Assembly station pipes and valves and fittings
Selected kits of the GUNT Practice Line

Next generation assembly exercises

Variable handling and processing of digital data is the access of understanding Industry 4.0

The GUNT Practice Line is a equipment series for assembly, maintenance and repair, which has been designed for technical colleges and company training centres. The close link between theory and practice-based learning content is evident.

The contemporary multimedia instructional materials provide extensive technical information that provides the basis for lesson design. The core element of the teaching materials is a complete set of drawings as files with lists of parts, single-part drawings, exploded views, assembly drawings and 3D drawings. All drawings are to standard and are dimensioned in accordance with production requirements. The set of drawings consists of CAD files, STEP files and PDF files. Assembly videos support the learning process.

Learning content

- assembly and disassembly of various industrial gear units
- planning of the assembly process
- familiarization of machine elements and their function
- reading and understanding of technical drawings
- calculation of transmission characteristics and learning about different types of materials
- dealing with digital data: CAD files, 3D PDF, exploded views
- creating production programs for 3D printing and CNC machining

Advantages

- comprehensive technical information and didactic material on USB stick and as printed manual
- surcharge- or accessories policy: you will receive everything you need for your successful lessons with one order number
- as GUNT you speak with experts: we are a mechanical engineering company, this distinguishes us from dealers or publishers You benefit from it

MT 120 Assembly exercise: spur gear

MT 121 Assembly exercise: mitre gear

MT 122 Assembly exercise: planetary gear

Storage system with foam inlay open: all components have their place, the foam is labelled

Set of small parts

Assembled gear units

Transparent sectional view of the assembled gears

Storage system + set of small parts (on top)
Multimedia instructional materials for GUNT assembly exercises

Interactive 3D PDF

The 3D PDF contains the assembly drawing of the assembly exercise. GUNT has defined two default views that can be opened by clicking on the respective icon: “Standard-Default” and “Schnitt-Sectional view”. Many effects are available to take a closer look at the fully assembled unit or at individual parts, among other things:

- rotate the entire object to any position
- mark a component: by clicking on the component, it is highlighted in the drawing and in the model tree. The click can be done both in the model tree and in the drawing.
- hide and show components
- representation as wireframe
- transparent representation of the object
- cut through the selected view

The illustration above shows the default view that opens after clicking on “Standard-Default”.

The gear unit is rotated. The driven shaft is selected and displayed in red (top). On the right, the same perspective is shown as shaded wireframe.

GUNT Media Center

The GUNT Media Center is a new platform that provides digital data via internet. Customers have the possibility to access data files and product information of selected products independent of time and place. This data include CAD-files as STP-files or DXF-files as well as PDF-files and videos.

After selection of the device the customer can choose to view and/or download the overall drawing, or the component groups or the single part drawings. Videos of assembly or disassembly as well as parts lists and manuals are available.

The product consists of various component groups, which are themselves assembled from individual parts. Parts lists as well as overall and single part drawings are provided.

Videos of assembly or disassembly

Exploded view
Multimedia instructional materials for GUNT assembly exercises

Videos
The assembly video shows the assembly step by step, including tools and devices. The individual parts to be assembled are described using the displayed list of parts. A short animation at the end of the assembly video shows the assembled unit in action. Another video supports the disassembly.

All component names (parts and tools) are used in the lists of parts, videos, and storage boxes. This makes it easy to identify and find every component.

Instructional material
Along with the printed manual customers get a USB stick that contains the videos, the set of drawings as files with lists of parts, individual part designations, exploded views, assembly drawings and 3D drawings. The set of drawings consists of CAD files, STEP files and PDF files.

Storage
The storage system consists of boxes with labelled foam inlays. All components are stored neatly, carefully, and easily to find (see illustration on the bottom of the left page). The boxes are clearly labelled and stackable.

The optional accessories MT 120.01 Trolley or MT 120.02 Transport roller are available for convenient transport of the kits.
Maintenance engineering

Plant and equipment are one of the biggest assets for any business, costing huge sums of money to replace when things go wrong. Without regular maintenance, business owners could see an increase in costly breakdowns, often incurring downtime and significant loss of earnings. Inspection and maintenance are therefore vital to detect and prevent any potential equipment issues or faults that would prevent operation at optimum efficiency. Good maintenance proves itself on a day-to-day basis.

Topics included in this unit

- Assembly projects – maintenance
- CAD for maintenance engineers
- Machinery diagnosis

This unit enables the learner to understand the underlying principles that apply to all commonly used processes and elements that are essential to most maintenance, installation, and commissioning activities. Students are introduced to the importance of equipment maintenance programmes, the benefits that well-maintained equipment brings to an organisation and the risks it faces if maintenance programmes and processes are not considered or implemented.

Topics included in this unit are:
- statutory regulations
- organisational safety requirements
- maintenance strategies
- safe working
- maintenance techniques

Learning outcomes

- understand how to plan maintenance, installation and commissioning activities
- know how to install and commission instruments and components
- understand how to evaluate methods to overcome friction and corrosion
- know how to evaluate connection methods
- analyse the impact of relevant statutory regulations and organisational safety requirements on the industrial workplace
- differentiate between the merits and use of different types of maintenance strategies in an industrial workplace
- illustrate competence in working safely by correctly identifying the hazards and risks associated with maintenance techniques
Maintenance is a key area in apprentice training

Plant and machinery should be operational...

Therefore maintenance is an essential part of production and machine management.

...not sitting idle.

You must have
- strategies and methods in place
- qualified and trained staff

GUNT supports you with our proven teaching systems regarding assembly projects and maintenance.
Our service will help you to make the education of your staff much more practice-oriented. This is hands-on tuition in practice.

There is much more at GUNT. On the following pages we show you some detailed examples.
Learning concepts relating to industrial maintenance

The maintenance of industrial plant and machinery is a key field of activity for technicians and skilled tradesmen working in mechanical and electrical engineering.

The GUNT training systems are ideally suitable for students’ group working, and of course for project-oriented working methods.

Key area in technical training
The level of attention devoted to the subject of maintenance by the curricula is therefore high.

Teaching and learning systems relating to maintenance
GUNT offers a wide range of wholly practice-oriented teaching and training systems relating to technical maintenance with which you can cover essential learning content:

- Use of specific manufacturer’s documentation for maintenance, inspection and repair
- Reading and understanding engineering drawings
- Familiarisation with machine and system components
- Understanding maintenance as the interaction between inspection, maintenance and repair
- Planning and assessing maintenance sequences and steps
- Practical execution and documentation of maintenance operations
- Testing and commissioning of repaired systems
- Assessment of malfunctions, detection of faults

Maintenance according to DIN 31051

Maintenance
Preservation of the target state
Cleaning, lubricating, adjusting
Only according to maintenance instructions during plant downtime

Inspection
Detection and assessment of the actual state
Measuring, testing, diagnosing
On operational plant and during plant downtime in accordance with inspection requirements

Repair
Restore the target state
Replacing or refitting
Only during plant downtime in accordance with job order and careful preparation

Improvement / overhaul
Elimination of weak points
Combination of all steps to ensure security of function in a unit without changing the basic functions themselves
Permanent improvement independent of operating status

What is maintenance?
‘Maintenance’ as defined by industry standard DIN 31051 is a complex field, so the range of teaching and training systems we offer in this area is very diverse.

Learning through practice...
This chapter deals with the process of familiarisation with components and their functions, reading and understanding engineering drawings or operating instructions, and familiarisation with technical terminology and language. The assembly exercises can be conducted in relatively short periods of time (within lesson units) and do not as yet require any particular technical experience. Fault diagnosis and maintenance measures are not yet central to the training systems.

The real, industrial nature of the exercises is higher than in the Assembly Projects. Typical maintenance methods and testing procedures are offered as learning contents. Some of the exercises take a lot of time to complete and amount to substantial project work. Demands are made on technical skills.

Machinery diagnosis
The teaching systems familiarise trainees with the specific methods of monitoring plant/machinery condition, such as the early detection of bearing or gear damage. We work primarily with vibration analysis methods which constitute diagnostic steps for preventive maintenance or targeted repair.

Assembly projects
The maintenance
It’s possible to do something in time
TZ 200.71
Assembly of lever shears
Coverage of the fundamentals: an assembly kit for introducing a course

- interdisciplinary teaching possibilities
- learning in a small team is an effective learning format
- excellent instructional materials, including digital files, for printing and presentation

Lever shears function groups

<table>
<thead>
<tr>
<th>Function group</th>
<th>Partial function</th>
<th>Movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>main body</td>
<td>carries, supports and guides all other parts</td>
<td>none</td>
</tr>
<tr>
<td>stop</td>
<td>sets the length to be cut off</td>
<td>none</td>
</tr>
<tr>
<td>shear body</td>
<td>transmits the shearing force to the workplace</td>
<td>rotary & linear motion</td>
</tr>
</tbody>
</table>

Learning objectives / experiments
- introduction to technical drawing:
 - reading and understanding technical drawings
 - three-plane views
 - sectional views
 - drawing types
 - 3D views
 - parts lists
 - dimensioning
 - surface finish and tolerance specifications
 - differentiation between standard and production parts
 - material specifications
- planning and execution of simple assembly operations:
 - planning and describing work sequences
 - assessing results
- measurement exercises:
 - length measurements
 - angle measurements
- manufacturing methods:
 - operational examples of handmade production and production on machine tools

Assembly step 1 (main body) – parts required for assembly

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Name</th>
<th>Pos.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>main body</td>
<td>17</td>
<td>socket head cap screw</td>
</tr>
<tr>
<td>3</td>
<td>bearing flange</td>
<td>18</td>
<td>cheese head screw</td>
</tr>
<tr>
<td>8</td>
<td>lower blade</td>
<td>23</td>
<td>parallel pin</td>
</tr>
<tr>
<td>11</td>
<td>base plate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MT 158
Assembly exercise: ball valve and shut-off valve
Two different valves and fittings in one assembly kit. Parts are clearly and perfectly arranged.

- exercises can be conducted in a classroom – no workshop environment necessary
- assembly exercises can be conducted in relatively short periods of time (within lesson units)
- comprehensive and well structured instructional material will impress you

Learning objectives / experiments
- design and function of a ball valve
- design and function of a valve
- assembly and disassembly, including for the purposes of maintenance and repair
- replacing components (e.g. seal)
- comparison of two different valves and fittings
- reading and understanding engineering drawings and operating instructions
- leak testing (together with hydraulic valves and fittings test stand MT 162)

Grinding of the seat of a flat seat valve

Replacement parts available according to part lists and drawings

Spindle sealing body seating ring valve box
MT 186
Assembly & maintenance exercise: gear pump

- Installing the driven shaft
- Mounting the wearing discs
- Components included in the assembly kit

Learning objectives / experiments
- Design and function of a gear pump and its components
- Assembly and disassembly for maintenance and repair purposes
- Replacing components (e.g., seals)
- Troubleshooting, fault assessment
- Planning and assessment of maintenance and repair operations
- Reading and understanding engineering drawings and operating instructions

MT 140.02
Assembly exercise: piston compressor
The classic assembly project

- Students studying the assembly
- An assembled compressor, to the left individual parts, exploded view in the background

Learning objectives / experiments
- Design and function of a compressor
- Reading and understanding engineering drawings
- Familiarisation with components and assemblies, their design features and functions
- Dimensioning exercises, gauging of parts
- Work planning, particularly planning and presentation of the assembly process
- Familiarisation with assembly aids and jigs

Along with the devices comes a video that shows clearly and easily to understand the individual steps for the assembly of a piston compressor.

In conjunction with MT 140.01
- Assembly exercises: component and complete unit assembly
- Analysis of faults and damage, in conjunction with maintenance and repair steps
- Material selection criteria

MT 140.01
Assembly exercise: piston compressor

- Functional testing of the assembled compressor

Along with the devices comes a video that shows clearly and easily to understand the individual steps for the assembly of a piston compressor.
MT 110.02
Assembly spur wheel / worm gear mechanism
A totally hands-on assembly exercise

- practical assembly of an industrial gear unit, using simple tools and devices
- broad scope of learning with interdisciplinary problems
- comprehensive and well-structured instructional material

Learning objectives / experiments
- design and function of a multistage gear combination
- reading and understanding engineering drawings
- familiarisation with component and assemblies, their design features and functions
- dimensioning exercises, gauging of parts
- work planning, particularly planning and presentation of the assembly process
- familiarisation with assembly aids and jigs
- assembly exercises: component and complete unit assembly
- analysis of faults and damage, in conjunction with maintenance and repair steps
- material selection criteria

In conjunction with MT 172:
- functional testing of the assembled gear unit

MT 190
Assembly materials tester
Build your own materials tester

- read and understand technical documentation
- plan and execute assembly steps and sequences
- familiarisation with machine elements and components
- commission and inspect materials tester after successful assembly
- plan, implement and evaluate maintenance operations
- fault analysis: troubleshooting, fault analysis and remedy
- after successful assembly
 - tensile test on metallic specimens
 - plot load-extension diagrams
 - Brinell hardness test

Fully assembled multistage gear

This is the assembly kit...

...and this is the result
MT 210
Assembly & maintenance exercise: refrigeration

Maintenance, repair, troubleshooting of a refrigeration system – totally practice-oriented

Learning objectives / experiments

- reading and understanding technical documentation
- in conjunction with ET 150.02
 - planning and executing assembly steps and processes
 - making pipe joints in accordance with a system diagram
 - carrying out electrical installation in accordance with a circuit diagram
- in conjunction with ET 150.01
 - filling and evacuating of the refrigeration system
 - commissioning and checking the refrigeration system after successful assembly
 - familiarisation with the function of a refrigeration system as a system and its components as system components
 - fault analysis: fault finding, fault evaluation and repair
 - planning, executing and evaluating maintenance processes

Fully assembled system:
1. fully hermetic compressor
2. filter drier
3. sight glass with humidity indicator
4. delivery side manometer
5. HP (high pressure) pressure switch
6. LP (low pressure) pressure switch
7. intake side manometer
8. cooling chamber with evaporator and fan
9. thermostat
10. expansion valve
11. assembly panel
12. solenoid valve
13. condenser with fan
14. service valves
15. electrical switch box

HL 960
Assembly station pipes and valves and fittings

Practically oriented assembly of piping and system installations...

Maintenance – repair

...it is difficult to imagine a more hands-on training system.

Learning objectives / experiments

- design and function of valves and fittings, piping elements and system components
- planning of piping and system installations according to specification, e.g. a process schematic
- selection of components and drafting of requirement lists
- technically correct preparation and execution of system assembly
- reading and understanding engineering drawings and technical documentation
- operational testing of the constructed systems (in conjunction with suitable water supply and disposal)

Leak testing at expansion valve

Worksheet 2, Page 4 - Solution to task 2.3

The following connecting elements are required to assemble the sections into the complete piping system:

Items:

1. Flat seal DIN 2690 / Klingersil
2. Hexagon head screw ISO 4014
3. Electrical switch box
4. Condenser with fan
5. Service valves
6. Assembly panel
7. Expansion valve
8. Solenoid valve
9. Condenser with fan
10. Filter drier
11. Sight glass with humidity indicator
12. Delivery side manometer
13. Intake side manometer
14. Fully hermetic compressor

Two examples from our comprehensive training documentation
Our instructional material will impress you

Tasks and solutions

- prepared exercises and worksheets help to focus on the learning task so the students work efficiently
- of course there is a recommended solution for every exercise

Complete set of drawings

The core of the teaching material is a complete set of drawings conforming to standards. In addition to the assembly drawing with parts list, you will find all manufacturing drawings of the individual parts. So you are able to produce your own parts, or have them manufactured for you.

GUNT attaches great importance to innovative, state-of-the-art solutions and modern ways of imparting knowledge in the preparation of instructional material.

Selected devices have:
- interactive 3D PDFs and CAD drawings
- videos with detailed step-by-step assembly instructions
- interactive parts list
- convenient transport systems

Platform-independent: computer, tablet or mobile phone

Special features

- Interactive 3D PDFs „Exploring“ of all details
- Videos with detailed step-by-step assembly instructions with interactive parts list function
- All CAD files and sets of drawings already included

Thought out storage and transport system

Storage case incl. gear set and mounting tools
CAD for maintenance engineers

Multimedia instructional materials for GUNT assembly exercises

There is a growing trend, in part due to the popularity of threedimensional (3D) Computer Aided Design (CAD) systems, for students to generate two-dimensional (2D) drawings from three-dimensional (3D) solid models. 3D models do look impressive and whilst they clearly serve an important function in CAD design, in reality the vast majority of CAD drawings used in the industry are 2D based and, of those, a significant number are schematic drawings utilised by maintenance engineers, which cannot be produced using a 3D system.

Therefore offers GUNT a new product series of assembly exercises that include multimedia instructional materials in different formats:

- 3D PDF files to view 3D sections, single parts, component groups as well as the solid body as overview
- 2D and 3D CAD drawings as DXF- (Drawing Interchange Format) and STEP-files (STandard for the Exchange of Product model data)

The aim of these multimedia instructional materials is to enable students to produce 2D CAD drawings (using industry standard CAD software), and to modify and construct drawings. This material will support the development of the students’ CAD abilities and build upon those skills to introduce the more advanced techniques that are used to create and modify schematic drawings quickly and efficiently.

MT 120 serves as an example of a series of GUNT devices offering multimedia instructional materials

All files may be downloaded by the client so that the data can be used individually in order to:

- create and modify CAD drawings
- construct, insert and export blocks with textual attributes
- produce complex schematic drawings
- transfer information to external sources, e.g. a 3D printer

Overview drawing

Component group drawing

Single-part drawing

For certain devices GUNT offers a web-based platform, that provides customers online with all multimedia instructional materials. Beside the set of drawings, this platform includes manuals and videos, e.g. of assembly or disassembly.
The aim of machinery diagnosis, also known as machinery status monitoring or condition monitoring system (CMS), is to conduct needs-based maintenance or repair and therefore to minimise the repair and downtimes of a machine. Damage should be detected when it occurs. This increases the overall equipment effectiveness (OEE), a measure of the added value of a plant, and optimises the cost structure.

Machinery diagnosis is used for:
- weak-point analysis to optimise a process or to detect expected errors in good time
- condition-based maintenance, e.g. the use of car tyres when these fail to meet the prescribed minimum tread depth
- avoid or minimise failures thanks to pre-determined maintenance, e.g. oil change in motor vehicle at a fixed interval or after a certain mileage

Machinery diagnosis is conducted on machines at standstill by:
- disassembly and visual inspection
- wear measurement
- crack testing (X-rays, ultrasound, magnetic penetration, natural frequency measurement)

Machinery diagnosis leads to:
- increased and optimum use of the lifecycle of plant and machinery
- improved operational safety
- increased plant reliability
- optimised operating processes
- reduced disturbances
- reduced costs

Machinery diagnosis is conducted on running machines by:
- measuring the state variables, e.g. vibration measurement
- acoustic measurement
- extension of the shaft
- lubricant analysis

What characterises the condition of a machine?
The following are some measurable state variables using the example of a diesel generator:

- Exhaust gas: temperature, exhaust emissions, soot
- Cylinder: pressure
- Piston ring nuts: measurable wear
- Cooling water: temperature, chemical composition
- Shaft: speed, bearing, vibrations, occurrence of vibrations (imbalance)
- Oil: fill level, age, temperature, pressure
- Lines with connecting points and seals: tightness
- Generator: current, voltage, electromagnetic radiation
- Foundation: noise, vibrations

Learning objectives / experiments:
- vibrational spectrum of the running noise of roller bearings
- familiarisation with the envelope analysis
- influence of damage to outer race, inner race or roller body, on the spectrum
- estimating service lives of roller bearings
- influence of the lubricant on the vibration spectrum
- detection of faulty roller bearings
- use of a computerised vibration analyser

Learning objectives / experiments:
- measure and assess machine vibrations
- occurrence of imbalance vibrations
- static, dynamic or general imbalance
- dependence of imbalance vibration on position and magnitude of the imbalance
- basic principles of balancing
- field balancing in one plane
- field balancing in two planes
- assessment of balancing quality
- using a computerised vibration analyser
Thermodynamics, heat engines and thermofluids

Thermodynamics is one of the most common applications of science in our lives, and it is so much a part of our daily life that it is often taken for granted. For example, when driving your car you know that the fuel you put into the tank is converted into energy to propel the vehicle, and the heat produced by burning gas when cooking will produce steam which can lift the lid of the pan. These are examples of thermodynamics, which is the study of the dynamics and behaviour of energy and its manifestations.

The significance that thermodynamics plays in the 21st century cannot be underestimated.

This unit helps to prepare students for an engineering apprenticeship, for progression to higher education and for employment in a technician-level role such as an aircraft maintenance technician, or as a technician with design responsibilities for improving the efficiency of power plants.

Topics included in this unit

- Fundamentals of thermodynamics
- Heat transfer
- Refrigeration systems
- Heat pumps
- Heat engines and thermofluids

Topics

This unit introduces students to the principles of thermodynamics that apply to gases and consider the process parameters that apply to thermodynamic systems, and how these affect the expansion and compression of gases.

Students learn how these thermodynamic parameters influence the operation of a range of open- and closed-loop thermodynamic systems.

Experimental investigation of the combustion process for different types of fuel and the performance of internal combustion engines are part of this unit.

Further on students examine the principles of heat transfer to industrial applications. Among the topics included in this unit are heat pumps and refrigeration, performance of air compressors, steam power plant and gas turbines.

Learning outcomes

- investigate thermodynamic principles related to the expansion and compression of gases that are applied in mechanical systems
- investigate energy transfer in thermodynamic systems and applications of open and closed-loop systems
- explore the combustion and sustainability of fuels that are used to produce work in mechanical systems
- investigate fundamental thermodynamic systems and their properties
- apply the Steady Flow Energy Equation to plant equipment
- examine the principles of heat transfer to industrial applications
- determine the performance of internal combustion engines
- evaluate the performance and operation of heat pumps and refrigeration systems
- review the applications and efficiency of different compressors
- determine steam plant parameters and characteristics
- examine the operation of gas turbines and assess their efficiency
Steam is used for a variety of processes in engineering. The most common applications are heating processes as well as steam turbines in power plants. Other typical applications include: propulsion, propellant, atomization, cleaning, product moistening and air humidification.

Different forms of evaporation in an externally heated pipe:
- observation of typical forms of evaporation
 - single phase liquid flow
 - sub-cooled boiling
 - slug flow
 - annular flow
 - film boiling
 - dispersed flow
 - single phase vapour flow
 - wet steam
- effect on the evaporation process by:
 - flow rate
 - temperature
 - pressure

Visualisation of different forms of evaporation in a transparent pressure vessel:
- visualisation of different forms of evaporation
 - free convection boiling
 - nucleate boiling
 - film boiling
 - heat transfer
 - effect of temperature and pressure on the evaporation process

Measurement of heat transfer in dropwise and film condensation:
- determination of the heat transfer coefficient
- effect of pressure, temperature and non-condensable gases on the heat transfer coefficient.
Material-bound heat transport

by conduction and convection

Conduction

In the case of thermal conduction, heat transport takes place through direct interaction between the molecules (e.g. molecule collisions) within a solid or a fluid at rest. A prerequisite for this is that there is a temperature difference within the substance or that substances of different temperatures come into direct contact with each other. All aggregate states allow this transfer mechanism.

The amount of heat transported depends on:
- the thermal conductivity \(\lambda \) of the material,
- the heat conducting length \(L \),
- the heat transferring area \(A \),
- the dwell time \(t \) and
- the temperature difference \(\Delta T \) between the beginning and end of the thermal conductor.

Convection

Heat transport takes place in flowing liquids or gases by means of material movement, i.e. material transport. Where forced convection occurs, the flow is forced by external forces. Examples: a pump in a warm water heater, fans in a power pack or PC. If the flow is caused by differences in density due to different temperatures within the fluid this is called free or natural convection. Examples: water movement when heated in a pot, by a foehn wind, the gulf stream, or a vent in a chimney.

Non-material-bound heat transport

by thermal radiation

Radiation

Energy transport through electromagnetic oscillation in a specific wavelength range. Any body with a temperature above zero Kelvin emits radiation known as thermal radiation. Thermal radiation includes UV radiation, light radiation and infrared radiation. Light radiation covers the wavelength range visible to the human eye.

Material characteristics

Heat transfer coefficient \(\alpha \): a measure of how much heat is transferred from a solid to a fluid or vice versa (convection).

Thermal conductivity \(\lambda \): a measure of how well heat is transferred into a solid (conduction).

Overall heat transfer coefficient \(k \): describes the overall heat transfer between fluids separated by solids (convection and conduction).

Reflectance, absorptance and transmittance: a measure of the proportion of thermal radiation reflected, absorbed or transmitted to a body (radiation).
Overall didactic concept for targeted teaching on the fundamentals of heat transfer.

- accurate measurements
- software-controlled
- tutorial software

Operation and data acquisition

Operation
- simple operation of the system via the software
- adjust operating parameters via respective button icons
- check and read off measured values

Time dependency
- representation of the measured values as a function of time
- plot and log your own characteristics
- freely selectable form of presentation of the measured values
 - measured values selection
 - resolution
 - colour
 - time intervals

Geometric temperature curve
- representations of the temperature curves make it easier to understand the respective heat transfer mechanisms

Network capability
- full network access to ongoing experiments by any number of external workstations
- experiments can be independently followed and evaluated by students at all workstations when using a single training system

LAN/WLAN connection
- One computer for control and operation of the experimental unit
- any number of workstations with GUNT software with just a single licence
WL 110-Series
Heat exchanger with supply unit

WL 110.01
Tubular heat exchanger

WL 110.02
Plate heat exchanger

WL 110.03
Shell & tube heat exchanger

WL 110.04
Stirred tank with double jacket and coil

WL 110
Heat Exchanger Supply Unit
The supply unit produces hot water. All measured values can be displayed on the device and transferred via a USB connection.

WL 110.20
Water Chiller
The water chiller can be used to operate the heat exchangers under suitable experimental conditions.

Operation and data acquisition

Data acquisition: temperature profile

Process schematic

Tutorial software
WL 315C
Comparison of various heat exchangers

The WL 315C trainer is used to study and compare different types of heat exchanger under experimental conditions. The most widespread design is the shell & tube heat exchanger, which is included here as double-tube and shell & tube heat exchangers. The plate heat exchanger is an equally frequently used design. One special design is the stirred tank with double jacket and coiled tube. In the model used here, hot water can flow through either the outer jacket or the inner coiled tube. The finned tube heat exchanger is a typical example of heat transfer between a liquid and a gaseous medium.

The types presented here are indirect heat exchangers, in which the material flows are conducted in parallel flow, counterflow or, in the case of the finned tube heat exchanger, in cross flow.

GUNT software for data acquisition

The GUNT software supports the range of experiments with the various types of heat exchanger: it displays temperature curves and calculates heat fluxes and mean overall heat transfer coefficients.
Experimental units from GUNT show the function of the components in the refrigerant circuit and their interaction with each other. Different types of main components such as compressors, evaporators and condensers as well as primary and secondary controllers are investigated and typical parameters are determined.

Cutaway models are ideal for displaying details and functions. GUNT uses industrial components for the section models. Movement and switching functions are retained. The sections are arranged in such a way that the constructive details are easily recognized. A short description and a sectional drawing are included in the scope of delivery.

Assembly exercises, troubleshooting and maintenance provide trainees with a particularly high level of practical relevance and support them with an overall didactic concept in learning manual work on refrigeration systems. This involves the planning, execution and checking of processes.
Refrigeration systems

ET 400

Refrigeration circuit with variable load

Compression refrigeration system with water-cooled evaporator

Learning objectives / experiments

- design and components of a refrigeration system
 - compressor
 - condenser
 - thermostatic expansion valve
 - evaporator
 - pressure switch
- representation of the thermodynamic cycle in the log p-h diagram
- determination of important characteristic variables
 - coefficient of performance
 - refrigeration capacity
 - compressor work
- operating behaviour under load

Solar cooling

With the increasing demand for refrigeration worldwide, the interest in processes of cold production which can be supplied from renewable energy sources is also growing. The use of solar power offers particular advantages for mobile and very remote applications.

ET 256 contains a typical compression refrigeration system with refrigeration chamber. It is possible to supply the refrigerant compressor directly with current from photovoltaic modules. To do this, the photovoltaic modules from ET 250 are connected to ET 256.

ET 250

Changes of state in the refrigeration circuit

Energetic analyses of the refrigeration cycle; transparent components offer insights into the changes of state

Learning objectives / experiments

- design and operation of a compression refrigeration system
- observe the evaporation and condensation of the refrigerant
- represent and understand the refrigeration cycle in the log p-h diagram
- energy balances
- calculation of the coefficient of performance

ET 256

Cooling with solar electricity

Compression refrigeration system for operation with solar current from ET 250

Learning objectives / experiments

- supply a compression refrigeration system with current from photovoltaic modules
- components of a photovoltaic refrigerating plant
- operation of the compressor with changing power available and cooling demand
- charge and discharge cold accumulators
- coefficient of performance of the refrigerating plant dependent on operating conditions
- refrigeration cycle in the log p-h diagram
- energy flow balance
ET 915 HSI training system refrigeration and air conditioning technology

The ET 915 HSI Training system refrigeration and air conditioning technology, base unit provides basic experiments for the different areas of refrigeration and air conditioning technology.

Refrigeration

ET 915.01 Refrigerator model

ET 915.02 Model of a refrigeration system with refrigeration and freezing stage

ET 915.06 Model of a simple air conditioning system

ET 915.07 Air conditioning model

All attachments contain expansion elements and evaporators

The ET 915 base unit contains the main compressor and condenser components

Modular system with extensive teaching possibilities

The term HSI refers to our overall didactic concept: Hardware – Software – Integrated.

Tutorial software

...with didactically valuable course of studies

- use the tutorial software on the students’ own PCs
- complete course of studies for refrigeration and air-conditioning technology including quiz
- very flexible thanks to the structure of own learning modules and tests
- intuitive user interface

Targeted review of the learning content

- learning progress can be monitored discreetly and automatically
- detect weaknesses and provide targeted support

Data acquisition

...with unlimited networking capability

- interactive experiments for students via network connection
- real-time display of the processes in the log p-h diagram and h-x diagram
- plug & play system via USB connection

Quiz with detailed evaluation
What is a heat pump?

A heat pump transports heat from a low temperature level to a higher temperature level. To do this, the heat pump requires drive power. This can be mechanical, electrical or thermal. Usually heat pumps which operate according to the principle of a compression refrigeration system are used. Less often, heat pumps running on the absorption process are used.

The COP is an important indicator for the operation of heat pumps. COP stands for “Coefficient of Performance”. The COP indicates how efficiently a heat pump works. This value allows an easy comparison between different heat pumps.

The COP is directly dependent on the temperature of the heat source and the heating temperature in the building. Therefore, the COP changes at each operating point of the heat pump. The larger the COP, the more effective the heat pump.

A heat pump can be used for cooling or heating

Because they have the same principle of operation, a heat pump can function as a refrigeration system. As such, it is possible to use the same system for heating in the winter and for cooling in the summer. Only the functions of evaporator and condenser are swapped. This takes place by switching over with two non-return valves and a second expansion valve. Most of these so-called split devices for room cooling already have a heater function included.

Utilisation of ambient heat for water heating

- design and operation of an air-to-water heat pump
- representation of the thermodynamic cycle in the log p-h diagram
- energy balances
- determination of important characteristic variables
 - compressor pressure ratio
 - ideal coefficient of performance
 - real coefficient of performance
- dependence of the real coefficient of performance on the temperature difference (air-to-water)
- operating behaviour under load
GUNT offers four different test stands for internal combustion engines in the 2.2 kW to 75 kW power range. The engines include four-stroke diesel and petrol engines, petrol engines with variable compression ratios and two-stroke petrol engines. The engines are supplied with fuel and air via the test stands. The exhaust gases can be studied using an exhaust gas analyser.

The electronic indicating system is a good way to gain an in-depth understanding of how an engine works. Special pressure sensors record the pressure in the cylinder chamber. These data provide important information on the combustion process in the engine. In industrial applications, indicating systems are used to optimise the combustion process. The data are used to create the indicator diagram. The indicating system helps identify the individual strokes of the engine. The process of ignition or an ignition attempt, and the gas exchange can be examined. Cranking without ignition can be simulated while examining the processes inside the cylinder chamber. The idling behaviour of diesel and petrol engines can be compared. The indicating system can be used to carry out a thermodynamic analysis of the engine.

Modern GUNT software for Windows with comprehensive visualisation functions:
- process schematic for all engines with real-time display of all measured and calculated variables
- display of up to four characteristics at the same time
- representation of characteristics: select any assignment for the axes of the diagram
- storage of measuring data
- selection between four preset languages
- easy connection to a PC via USB
- calculated variables
 - specific fuel consumption
 - intake air volumetric flow rate
 - mechanical power
 - efficiency
 - volumetric efficiency
 - fuel-air ratio λ

CT 159
Modular test stand for single-cylinder engines, 2.2 kW

CT 150
Four-stroke petrol engine for CT 159

CT 152
Four-stroke petrol engine with variable compression for CT 159

CT 151
Four-stroke diesel engine for CT 159

CT 153
Two-stroke petrol engine for CT 159

CT 110
Test stand for single-cylinder engines, 7.5 kW

CT 100.21
Two-stroke petrol engine for CT 110

CT 100.20
Four-stroke petrol engine for CT 110

CT 100.22
Four-stroke diesel engine for CT 110

CT 100.23
Water-cooled four-stroke diesel engine for CT 110
ET 513
Single-stage piston compressor with drive unit HM 365

Piston compressors deliver compressible media such as gas or air. Piston compressors are positive displacement machines. The piston (displacement element) forms a space with variable volume together with cylinder and cylinder cover. A crank mechanism generates the periodic reciprocating movement of the piston inside the cylinder. The self-acting valves in the cylinder cover control the inflow and the outflow of the delivered medium.

Learning objectives / experiments
- operating principle of a piston compressor
- measurement of volumetric flow rate and pressures
- power measurement
- determination of efficiency
- plotting of compressor characteristic
- determination of intake and volumetric efficiency

The process of delivery is divided into four steps

1. **intake**
 - The piston moves downwards and the delivery medium (air) is sucked into the cylinder via the opened intake valve.

2. **compression**
 - The piston moves upwards, the intake valve is closed and the pressure in the cylinder increases.

3. **discharge**
 - Once the pressure in the cylinder exceeds the pressure inside the outlet line, the discharge valve opens and the piston pushes the compressed medium into the outlet line.

4. **expansion**
 - The cylinder volume is not emptied completely into the outlet line. A small part remains inside the cylinder. This part expands during the downward movement of the piston until the pressure inside the intake line is reached. The first step (intake) follows.

The software enables display of measured values on a PC. Recording and saving of data history is possible.

With the help of spreadsheet programmes (e.g. MS Excel) saved data can be evaluated. The measured values are directly transmitted to the PC via USB.
GUNT steam power plants

Steam power plants play a key role in supplying electrical energy. This is why the Rankine steam cycle is still one of the most important industrially used cyclic processes today. Thanks to optimised processes, the efficiency of electrical energy generation has improved continuously over the past years. Today, a total efficiency of almost 45% has been achieved. The steam cycle process therefore plays an important role in the training of future engineers. GUNT steam power plants for laboratory and experimental applications offer a practical approach to teaching this important subject area in technical fields of study. They are particularly well suited for investigating and understanding the behaviour of steam power plants under different operating conditions. The plants are built with real, industrial components, and can also be used to teach aspects such as maintenance, repair, measurement technology, and control engineering.

GUNT offers a wide range of steam power plants

The GUNT steam power plant product range encompasses everything from simple demonstration facilities with a power output of just a few watts, to modular systems in the medium power range, and a complex steam power plant with a process control system and an output power of 20 kW (ET 805).

Due to the size and complexity of ET 805, many aspects of its operating behaviour correspond to those of real large-scale plants, allowing for hands-on training. ET 805 consists of three separate modules and a control station.

ET 805 Steam power plant 20kW with process control system

Module A steam generator assembly
Module B steam turbine assembly
Module C wet cooling tower
Module D control station

ET 810 Steam power plant with steam engine 5W
ET 813 Two-cylinder steam engine (500W) together with HM 365 Universal drive and brake unit and ET 813.01 Electrical steam generator

5W 50W 500W 1500W 20000W

ET 810 Steam power plant with steam engine 5W
ET 813 Two-cylinder steam engine (500W) together with HM 365 Universal drive and brake unit and ET 813.01 Electrical steam generator

5W 50W 500W 1500W 20000W

ET 850 Steam generator and ET 851 Axial steam turbine (50W)

5W 50W 500W 1500W 20000W

ET 830 Steam power plant, 1.5 kW or ET 833 Steam power plant, 1.5 kW with process control system
Gas turbines for experiments and demonstration

A real jet engine in laboratory scale is used as the gas turbine for the trainer ET 796. The jet engine is a single-shaft engine with radial compressor, annular combustion chamber and axial turbine. As in reality the turbine is operated with kerosene. An electronic control unit (ECU) facilitates automated start-up and monitors turbine functions.

ET 792
Gas turbine
Operation with power turbine or as jet engine with propelling nozzle using liquid gas

Learning objectives / experiments
- familiarisation with the function and typical behaviour during operation of a gas turbine
- operation as jet engine
- operation as power turbine
- determining effective power
- thrust measurement
- determining specific fuel consumption
- recording the characteristic of the power turbine
- determining the system efficiency

ET 796
Gas turbine jet engine
Small single-shaft gas turbine with thrust measurement using either kerosene or petroleum

Learning objectives / experiments
- behaviour during operation of a jet engine including start-up procedure
- determination of the specific thrust
- determination of the specific fuel consumption
- determination of lambda (fuel-air ratio)

A protective hood ensures safe operation and prevents burns from the hot turbine.
The buildings we use in everyday life to live, work, study and socialise are becoming increasingly more complex in their design. As well as being subject to more stringent environmental emission targets, within these buildings the heating, ventilation and air conditioning (HVAC) systems play a vital role in maintaining the comfort of the occupants within the built environment.

This unit will introduce students to some of the most important HVAC systems and their supporting elements, and the underpinning science that is currently used in many different buildings around the world. Subjects covered include:

Ventilation systems
- requirements
- ventilation rates
- ventilation strategies
- fans, fan types and operational characteristics

Air conditioning systems
- requirements
- air conditioning strategies
- cooling loads
- psychrometrics

Heating systems
- fuels
- combustion
- boiler efficiency

Learning outcomes
- explain the operating principles of ventilation systems
- explore the range of air conditioning systems
- investigate the operational characteristics of heating systems
Ventilation systems ensure the change of air in residential, office and equipment rooms. Ventilation systems are not only concerned with air supply and exhaust, but also with the consideration of thermal energy: sophisticated ventilation systems can transfer the heat of the outflowing air to the incoming air, so that hardly any thermal energy leaves the system.

There are basically three types of system:
1. exhaust air system: the “used” air from the building is expelled to the outside (outgoing air)
2. ventilation system: in addition to the exhaust air system, a supply system supplies fresh air to the living areas
3. different techniques that target the saving of heating energy, e.g. via heat recovery or geothermal heat exchangers

These systems are grouped together under the term controlled residential ventilation. Non-controlled ventilation of living space, on the other hand, is the free ventilation of living space by means of window ventilation, joint ventilation or shaft ventilation.

Fans, fan types and operational characteristics

HM 280
Experiments with a radial fan

HM 282
Experiments with an axial fan

Learning objectives / experiments
- plan, setup and test air duct systems
- typical components of ventilation technology
- measure the flow rate and velocity of the air
- measure dynamic and static pressures
- determination of the pressure loss via different components: pipe bends, angles, distributors etc.
- recording of system characteristics
- recording of the fan characteristic
- determination of the operating point
- calculate the electric capacity of the fan motor with regard to current and voltage
- calculate the fan efficiency
Air conditioning systems

ET 915 HSI training system refrigeration and air conditioning technology

- Air conditioning system for room cooling and its main components
- Principle of operation of an evaporator as air cooler
- Complete model of a full air conditioning system
- Heating, cooling, humidifying and dehumidifying
- Outer air and recirculation operation possible

ET 800 Conditioning of room air

- Air conditioning system with steam humidifier
- Wide experimental program for conditioning of room air
- Representation of the thermodynamic principles in the log p-h and h-x diagram

ET 605 Air conditioning system model

- Climatic chamber with latent and sensitive heat source as cooling load
- Recirculating and outer air operation
- Connection options for the use of different automation solutions
Heating systems

Generation of hot water

- Oil, gas or wood-fired boiler
- Electric resistance heating
- Solar thermal energy
- Heat pump

Water as a heat transfer medium

Advantages:
- high heat capacity
- inexpensive and easily obtainable
- non-toxic and environmentally friendly

Disadvantages:
- temperature range only 0...100°C at ambient pressure
- corrosive in the presence of oxygen

Heat transfer to rooms

- Radiator with natural convection
- Underfloor or wall heating with natural convection
- Air heater with forced convection

HL 352 Test stand for oil, natural gas and propane gas burners

Gas and oil burners can be used to generate heat for central hot water heating systems. Burners convert the chemically stored energy of the fuels into thermal energy. There are different types of burners that differ mainly in their design. Oil burners are distinguished as yellow flame or atomizing burners and blue flame burners. Gas burners can be built in the form of gas fan burners, which are optimised for different gases depending on the heating medium.

Learning objectives / experiments

- design and operating behaviour of a heating boiler
- comparison of burners (3 different burners available as accessories)
- changes in settings during operation with observation of the effects on the flame pattern
- temperature measurements in different areas of the combustion chamber
- oil pressure measurements on the burner with observation of the effect on the flame pattern
- thermal balance
- calculation of the thermal output of a heating boiler
Fluid mechanics

Fluid mechanics is an important subject to engineers of many disciplines, not just those working directly with fluid systems. Mechanical engineers need to understand the principles of hydraulic devices and turbines (wind and water); aeronautical engineers use these concepts to understand flight, while civil engineers concentrate on water supply, sewage and irrigation.

This unit introduces students to the fluid mechanics techniques used in mechanical engineering. The hydraulic devices and systems that incorporate the transmission of hydraulic pressure and forces exerted by a static fluid on immersed surfaces.

Topics included in this unit:
- Pressure and force
- Submerged surfaces
- Fluid flow theory
- Aerodynamics
- Fluid machinery

Learning outcomes:
- Determine the behavioural characteristics of static fluid systems
- Viscosity in fluids
- Investigate dynamic fluid parameters of real fluid flow
- Examine fluid flow phenomena, including energy conservation, estimation of head loss in pipes and viscous drag
- Aerodynamics
- Explore dynamic fluid parameters of real fluid flow
- Examine the operational characteristics of hydraulic machines, in particular the operating principles of various water turbines and pumps
- Analyze fluid systems and hydraulic machines

Topics included in this unit:
- Static fluid systems
- Fluid flow theory
- Open-channel flow
- Aerodynamics
- Fluid machinery
Static fluid systems

Hydrostatics trainer

Learning objectives / experiments
- study of buoyancy on a variety of bodies
- study of the density of liquids
- hydrostatic pressure, Pascal’s law
- communicating vessels
- determination of the centre of pressure
- study of surface tensions
- demonstration of capillarity
- Boyle’s law
- study of static and dynamic pressure component in flowing fluid
- familiarisation with various methods of pressure measurement

Communicating vessels

Communicating vessels are tubes that are open at the top and interconnected at the bottom. Regardless of the shape and size of the tubes, the level of the fluid in them is the same.

Applications include water levels, locks and drain traps in sewers.

Hydrostatic paradox

The hydrostatic pressure generates a force \(F \) on the area \(A \). If these areas are equal, this force only depends on the level \(h \); the shape of the vessel is irrelevant.

Learning objectives / experiments
- pressure distribution along an effective area in a liquid at rest
- lateral force of the hydrostatic pressure
- determination of the centre of pressure and centre of area
- determination of the resulting compressive force

Hydrostatic pressure on walls

In addition to the ground pressure of a fluid, it is often important to also know the hydrostatic pressure on boundary surfaces, for example in order to calculate the forces acting on the side walls (channel, aquarium etc.) or on weirs.

Viscosity

Determination of the settling velocity

Influence of the following parameters on the settling velocity of spheres:
- diameter of the sphere
- density of the sphere
- density of the fluid
- viscosity of the fluid

Learning objectives / experiments
- determination of the settling velocity of spheres
- pressure distribution along an effective area in a liquid at rest
- determination of the centre of pressure and centre of area
- determination of the resulting compressive force
HM 241 Fundamentals of water flow

HM 241 is suitable for conducting basic experiments in the field of incompressible flow. This tabletop demonstrator only requires a small amount of space, is simple to use and offers particularly illustrative experiments thanks to the transparent design. The measured values are displayed on a PC. The experimental unit does not require a water connection.

The water level in the open channel is measured with the electronic level gauge. The level gauge can be attached at any point on the side wall of the duct. The water level is determined by means of a sliding probe. The position of the probe can either be read directly from the scale on the level gauge or displayed digitally on the main unit.

The power meter HM 240.02 measures the power consumption of the pump and allows the calculation of the pump characteristic. The power is determined by real-time-multiplication of current and voltage. The power determination does not depend on the waveform of the plot.

Software for data acquisition

The GUNT software included in the scope of delivery displays the measurement results and assists in the evaluation of the experiments.

The instructional material includes a detailed introduction to the fundamental principles of fluid mechanics.

The series includes extensive experiments on the subject of pipe flow and open-channel flow.

All major pipe elements such as:
- straight pipe sections, pipes with different cross-sections
- pipe bends, pipe angles
- enlargements, contractions
- nozzles, orifices
are clearly displayed in a compact space.

Open-channel flow and its main effects such as:
- overfall over the weir
- supercritical flow
can be seen especially well in the transparent open channel.
Fluid mechanics
Fluid flow theory

HM 150-Series
Introduction into the fundamentals of fluid mechanics

The HM 150 base module provides a closed water circuit to supply the separate experimental units. The experimental unit is connected to the base module for the water supply via a hose. With HM 150 the flow rate is measured volumetrically.

Laminar and turbulent flow

HM 150.01
Pipe friction for laminar/turbulent flow

Pressure losses as a function of velocity in pipe flow:
1 laminar flow, 2 transition from laminar to turbulent, 3 turbulent flow, h pressure loss, v velocity

Energy losses in piping systems

HM 150.11
Losses in a pipe system

Re < 2300
Re = 2300
Re > 2300

HM 150.29
Energy losses in piping elements

Flow measurement

HM 150.07
Bernoulli’s principle

Pressure curve in a Venturi nozzle

p pressure, x section

HM 150.13
Methods of flow measurement

Turbomachines

HM 150.04
Centrifugal pump

HM 150.19
Operating principle of a Pelton turbine

HM 150.20
Operating principle of a Francis turbine

HM 150.08
Series and parallel configuration of pumps

Energy losses in piping systems

Sample measurement of the pressures between the various pipe elements

Re Reynolds number
HM 150-Series
Introduction into the fundamentals of fluid mechanics

Transient flow

HM 150.15
Hydraulic ram – pumping using water hammer

Steady open-channel flow

HM 150.21
Visualisation of streamlines in an open channel

Flow around bodies

HM 150.10
Visualisation of streamlines

Various models included:
- drag bodies and changes in cross-section
- sources and sinks, individually or in combination

Flow from tanks

HM 150.09
Horizontal flow from a tank

HM 150.12
Vertical flow from a tank

Determining the metacentre

HM 150.06
Stability of floating bodies

1 stable position, 2 stable position despite load, metacentre above the centre of gravity, 3 unstable position due to load, metacentre under the centre of gravity, green arrow: restoring moment, M metacentre, S centre of gravity, A centre of buoyancy, z metacentric height, α angle of heel

HM 150.39
Floating bodies for HM 150.06

HM 150.03
Plate weirs for HM 150

HM 150.08
Measurement of jet forces
Demonstration of the principle of linear momentum; interchangeable deflectors with different deflection angles

HM 150.14
Vortex formation
Free and forced vortex; point gauges to detect surface profiles

HM 150.03
Principle of operation of a hydraulic ram

Waste valve open, check valve closed, water outlet through waste valve; 1 inlet tank, 2 waste valve

Waste valve closed, check valve open, water inlet to air vessel and elevated tank; 1 inlet tank, 2 check valve, 3 waste valve, 4 air vessel with air volume, 5 riser, 6 elevated tank; h head

Waste valve closed, check valve open, water inlet to air vessel and elevated tank; 1 inlet tank, 2 check valve, 3 waste valve, 4 air vessel with air volume, 5 riser, 6 elevated tank; h head
HM 160 is the smallest experimental flume in the GUNT range that can be used to give excellent demonstrations of all open-channel flow phenomena. Thanks to its small size and the closed water circuit, HM 160 can easily be set up and used in classrooms.

The experimental flume HM 160 is available with two experimental sections of different lengths: 2.5 m or 5 m with an additional extension element HM 160.10 – see diagram.

Used together with the comprehensive selection of additional accessories a wide range of topics within the field of open-channel flow can be demonstrated and investigated. These accessories include control structures, discharge measurement, losses due to changes in cross-section, waves and sediment transport. Additional accessories allow measuring the discharge depth and flow velocity.

Models available as accessories

<table>
<thead>
<tr>
<th>Control structures</th>
<th>HM 160.29 Sluice gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM 160.40 Radial gate</td>
<td>HM 160.30 Set of plate weirs, four types</td>
</tr>
<tr>
<td>HM 160.31 Broad-crested weir</td>
<td>HM 160.33 Crump weir</td>
</tr>
<tr>
<td>HM 160.34 Ogee-crested weir with pressure measurement</td>
<td></td>
</tr>
<tr>
<td>HM 160.36 Siphon weir</td>
<td>HM 160.32 Ogee-crested weir with two weir outlets (expandable with HM 160.35 Elements for energy dissipation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discharge measurement</th>
<th>HM 160.51 Venturi flume</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM 160.77 Flume bottom with pebble stones</td>
<td></td>
</tr>
<tr>
<td>HM 160.44 Silt</td>
<td>HM 160.45 Culvert</td>
</tr>
<tr>
<td>HM 160.46 Set of piers, seven profiles</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in cross-section</th>
<th>HM 160.77 Flume bottom with pebble stones</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM 160.44 Silt</td>
<td>HM 160.45 Culvert</td>
</tr>
<tr>
<td>HM 160.46 Set of piers, seven profiles</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
<th>HM 160.41 Wave generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM 160.42 Plain beach</td>
<td>HM 160.72 Sediment trap</td>
</tr>
<tr>
<td>HM 160.73 Sediment feeder</td>
<td>HM 160.61 Vibrating piles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measuring instruments available as accessories</th>
<th>HM 160.52 Level gauge / HM 160.91 Digital level gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM 160.53 Ten tube manometers</td>
<td>HM 160.50 Piezometer</td>
</tr>
<tr>
<td>HM 160.64 Velocity meter</td>
<td>HM 160.51 Venturi flume</td>
</tr>
</tbody>
</table>

1 water tank, 2 outlet element, 3 pump with switch box, 4 experimental section, 5 height-adjustable support incl. flume inclination adjustment, 6 inlet element.
HM 225
Aerodynamics trainer

Experiments from the field: steady flow

- **HM 225.03** Bernoulli’s principle
- **HM 225.05** Flow in a pipe elbow
- **HM 225.07** Free jet

Experiments from the field: flow around bodies

- **HM 225.02** Boundary layers
- **HM 225.04** Drag forces
- **HM 225.06** Coanda effect
- **HM 225.08** Visualisation of streamlines
HM170 Open wind tunnel

GUNT offers an ‘Eiffel’ type open wind tunnel as a classic experimental plant in the field of flow around bodies. The flow medium of air is brought up to the desired velocity by a fan and flows around the model being studied in a measuring section. Additional experiments, such as investigation of the boundary layer or pressure distribution of drag bodies immersed in a flow are available as options.

Training at the HM 170 Open wind tunnel at the Technical College for Aeronautical Engineering in Hamburg (Germany)

Measuring lift and drag forces as a function of the angle of attack of an aerofoil with flap and slot.

The new design of the open wind tunnel HM 170

Measuring lift and drag forces on the streamlined body with the two-component force sensor.

Pressure distribution on an aerofoil immersed in a flow.

Measuring lift and drag forces and moment on the aerofol drag body with the three-component force sensor HM 170.40

HM 170 with optional accessories: different drag bodies and HM 170.50 16 tube manometers
Air flows along an elastic system. Motion-controlled flow forces can cause vibrations with significant amplitudes in the elastic system. This instability phenomenon is called flutter. Flutter is crucial in the design of aircraft, bridges, chimneys and high-voltage power lines. This model is used to demonstrate the aerodynamic excitation of vibrations and instability. By using a stroboscope it is possible to observe the natural oscillation of the wing.

Force measurement on the drag body

- F_A: lift force, F_W: drag

Demonstration of flutter

HM 170.20 Airfoil, spring-mounted
- demonstrate flutter (self-excited vibrations)
- natural oscillation behaviour can be influenced by different spring settings

Air flows around various drag and lift bodies HM 170.01 – HM 170.14

- determining drag and lift coefficients
- two-component force sensor for measuring drag and lift forces included in HM 170
- visualization of streamlines by using fog

Pressure distribution at the perimeter of a cylinder immersed in a flow

HM 170.23 Pressure distribution on a cylinder
- record pressure distribution on the perimeter of the cylinder
- measuring the static pressure
- each pressure measuring point is equipped with a hose connection

Comparison between measured and ideal pressure distribution when flowing around a cylinder

1 measuring point, 2 flow separation, 3 turbulence

In conjunction with the electronic pressure measurement HM 170.55:
- recording and display of the pressure distribution on a PC
- saving of measured values

In conjunction with the HM 170.50 16 tube manometers:
- recording the pressure distribution
- particularly clear display of the pressure distribution by the simultaneous measurement of all pressure measuring points with the tube manometers HM 170.50
In order to properly use a pump, it is important to know the pump’s operating behaviour. The HM 362 trainer offers students the opportunity to compare the operating behaviour of three different types of pumps. The trainer includes two centrifugal pumps, a piston pump as positive displacement pump and a self-priming side channel pump. The side channel pump primarily works as a centrifugal pump and, depending on the fill level, may also act as a positive displacement pump. This means a special feature of the side channel pump is the ability to convey gases.

Investigations on series and parallel configurations can be conducted with the two identical centrifugal pumps. The trainer provides a ready-prepared place for experiments with its own pump. This space is fitted with a variable speed three-phase motor, whose direction of rotation is reversible.

The measurements are supported and visualised by the GUNT data acquisition software.

Compare operating behaviour of different types of pumps

<table>
<thead>
<tr>
<th>Type of Pump</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifugal pump</td>
<td>▢</td>
</tr>
<tr>
<td>Side channel pump</td>
<td>□</td>
</tr>
<tr>
<td>Piston pump</td>
<td>□</td>
</tr>
</tbody>
</table>

Units

- Flow rate (Q) in L/h
- Head (H) in m

Display of measured data on displays on the trainer and in the GUNT software on a PC

- Record characteristic curves

Sensors for flow measurement

Each pump has an inlet and outlet above pressure sensors

Free space for investigation of additional pumps

Two centrifugal pumps

Side channel pump

Piston pump
GUNT-Labline
Complete course on fluid machinery

The GUNT-Labline “Fluid Energy Machines” allows an easy introduction to a complex subject. The experimental units offer basic experiments to familiarise students with the function, the operating behaviour and the most important characteristics of positive displacement and turbomachines. Transparent housings allow observation during operation. The GUNT-Labline comes with microprocessor-based metrology and a device-specific GUNT software for control and data acquisition via USB.

Advantages of the device conception:
- the compact design enables mobile use of the experimental units
- easy transport thanks to handles on the tabletop devices and rollers on the frame
- the same device can be used for demonstration purposes in the lecture hall or the classroom or to conduct experiments in the laboratory
- only a power connection is required for operation of the equipment
- no external water supply required thanks to closed water circuits
- despite complex metrology and software analysis, the devices do not require any complicated wiring: a USB connection to the computer is sufficient
- transparent housing and clear arrangement provide an excellent insight on the functions of the components and on the procedures for operation of the equipment
- damage caused by incorrect operation is very rare thanks to the way in which the devices are designed
- the compact size of the experimental units and the low price make it easy to fit out a classroom or laboratory with a larger number of experiment workstations

Ideas in the didactic concept:
- a self-contained course on the topic of fluid energy machines
- the experimental units of one sub-field complement each other in terms of learning objectives
- each experimental unit forms a self-contained learning unit
- effective learning in small groups (2-3 people)
- the direct proximity to the experimental unit encourages inquisitive exploration of the technology
- developments of characteristic properties of various types of machines
- comparison and evaluation of different types of machines

In addition, the common fundamentals of the experimental techniques can be practised, for example:
- selecting the chart axes
- selecting the increment when varying parameters
- waiting for the steady state
- averaging over time with fluctuating readings, etc.

Experiments for different fans and a radial compressor:
- HM 280 Experiments with a radial fan
- HM 282 Experiments with an axial fan
- HM 292 Experiments with a radial compressor

Experiments for different water turbines:
- HM 289 Experiments with a Pelton turbine
- HM 291 Experiments with an action turbine
- HM 287 Experiments with an axial turbine
- HM 288 Experiments with a reaction turbine

Experiments for centrifugal and positive displacement pumps:
- HM 283 Experiments with a centrifugal pump
- HM 285 Experiments with a piston pump
- HM 284 Series and parallel connected pumps
- HM 286 Experiments with a gear pump
In order to enable optimal teaching in the demanding field of fluid energy machines, we have developed a learning concept that perfectly combines the various advantages of mechanical models, device-specific software and the instructional material.

Simple and clear mechanical models of the machines are connected to the PC via USB. Operation, measurement, display and analysis of measurement data are all carried out on the PC. To this end, the electronic data acquisition and control components are fully integrated into the models. The PC is therefore an integral part of the system. We call this the Hardware-Software Integration approach, or HSI for short.

The experimental units represent self-contained learning units, complementing the experimental units from a sub-field in terms of the learning objectives. During the experiments, importance is placed on the development of characteristic properties of the various types of machine. This allows the students to perform an evaluative comparison of the machine types and to assimilate criteria for later work in practice. The advantages and disadvantages of different types of machines can be demonstrated and discussed.

Advantages of the learning concept

Instructional material in paper form

A fundamental section with the relevant theory and model-based experiment instructions allow an intensive preparation for the experiment. Sample experiment results allow a qualified assessment of the students’ own results.

Our didactic materials offer excellent support when preparing lessons, when conducting the experiments and when reviewing the experiment.

Mechanical model

Housing, pipes and tanks are transparent and provide a view of the key components and flow processes during operation (vortex, air bubbles, cavitation). Operating and flow noise and vibrations produce a realistic impression.

All this makes the function and processes in a machine understandable and guarantees a sustainable learning experience.

Device-specific GUNT software

The software forms a bridge between the mechanical model and the instructional material in paper form. The software reflects the behaviour of the machine in specific measurements. The machine’s behaviour can be studied and discussed in form of characteristic curves. Through simulation, the software provides the ability to visualise flow processes that cannot be seen and to show them in slow motion.

In particular the energy conversion between a mechanical component and a fluid in a fluid energy machine is easily understood.
A wide range of experiments with a variety of options

Device-specific GUNT software, together with the microprocessor, provides software-based experiment execution and assessment:

- Record typical characteristic curves
- Measurement of the mechanical, electrical, and hydraulic power as well as power consumption
- Determine the efficiency
- Effect of speed on pressure and flow rate
- Advantages and disadvantages of various fluid energy machines
- How the impeller shape affects the characteristic and efficiency
- Occurrence of cavitation
- Function of an air vessel

Overview of the topics

<table>
<thead>
<tr>
<th>Fans, compressors</th>
<th>Pumps</th>
<th>Turbines</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM 280 Experiments with a radial fan</td>
<td>HM 283 Experiments with a centrifugal pump</td>
<td>HM 287 Experiments with an axial turbine</td>
</tr>
<tr>
<td>- Characteristic of a radial fan</td>
<td>- Typical dependence of pressure and flow rate on speed</td>
<td>- Torque/speed characteristic curve</td>
</tr>
<tr>
<td>- Effect of the impeller shape</td>
<td>- Characteristic of a centrifugal pump</td>
<td>- Hydraulic input power</td>
</tr>
<tr>
<td></td>
<td>- Stage pressure ratio</td>
<td>- Mechanical output power</td>
</tr>
<tr>
<td></td>
<td>- Temperature increase</td>
<td>- Efficiency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HM 282 Experiments with an axial fan</th>
<th>HM 284 Series and parallel connected pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Characteristic of an axial fan</td>
<td>HM 287 Experiments with an axial turbine</td>
</tr>
<tr>
<td>- Stall</td>
<td>- Power regulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HM 285 Experiments with a piston pump</th>
<th>HM 288 Experiments with a reaction turbine</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Typical characteristic of a displacement pump</td>
<td>- Partial load behaviour</td>
</tr>
<tr>
<td>- Cylindrical pump process over time</td>
<td>- Partial load behaviour with needle adjustment compared to a throttle control</td>
</tr>
<tr>
<td>- Pressure and air vessel</td>
<td>HM 289 Experiments with a Pelton turbine</td>
</tr>
<tr>
<td>- Mechanical drive power</td>
<td>- Power regulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HM 286 Experiments with a gear pump</th>
<th>HM 291 Experiments with an action turbine</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Typical dependence of pressure and flow rate on the speed</td>
<td>- Partial load behaviour with regulation via number of nozzles compared to a throttle control</td>
</tr>
<tr>
<td>- Pressure limitation</td>
<td>- Power regulation</td>
</tr>
<tr>
<td>- Characteristic of a displacement pump</td>
<td>- Partial load behaviour with regulation via number of nozzles compared to a throttle control</td>
</tr>
</tbody>
</table>
Industrial services and systems

Behind the scenes in many modern-day manufacturing facilities there lies a complex system of services that powers production, both day and night. The underlying aim of this unit is to enhance the students’ understanding of the electrical supply systems, industrial air compressors, steam services, refrigeration systems and heat pumps that are used in an array of industrial engineering environments. This broad-based methodology reflects the fact that operations engineering encompasses many disciplines and, as such, engineers must be conversant in the wide scope of service provision. The intention is to encourage students to develop a holistic approach to the design, operation, installation and maintenance of both industrial services and operating equipment.

Topics included in this unit

- Industrial training systems
- Industrial components
- Steam power plants
- Heat pumps and refrigeration

Topics

- Industrial training systems
- Industrial components
- Steam power plants
- Heat pumps and refrigeration

Learning outcomes

- Level 3: manage and maintain a wide range of commonly encountered industrial systems
- Level 4: describe the main elements of an electronically controlled industrial system
- Level 5: identify and specify the components of industrial systems

On successful completion of this unit students will be able to manage and maintain a wide range of commonly encountered industrial systems.

- discuss provision of steam services for process and power use
- review industrial refrigeration and heat pump systems
Industrial training systems

GUNT has been known for decades as the leading manufacturer of educational systems, famous in engineering departments of universities and colleges. An other field of GUNT’s activities are Industrial Training Plants to cater for the specific training needs of the industry.

GUNT training systems for industry are absolutely authentic:
- handling real-world industrial equipment components
- detailed familiarisation with plants and processes
- familiarisation with and application of industrial automation technology
- operating plants
- understanding and executing maintenance and servicing procedures
- aspects of plant and occupational safety
- complete course concepts with diverse problems can be constructed and the training plant can be the center of training for several weeks.

IUI Industrial unit for inspection
LxWxH: 15,0x6,0x4,1m
- train students with the objectives “Technical Inspector in mechanical and electrical engineering sector”
- quality management and maintenance operations

PST Phase separation trainer
LxWxH: 5,0x2,5x2,5m
- practical experience in separation technology
- separate synthetic crude oil to fractions: oil, water, gas
- control, operation and maintenance methods

PPT Process pump trainer
LxWxH: 7,5x4,5x2,8m
- practical experience in fluid transport technology
- synthetic crude oil as medium
- Three different pump sets in comparison, Phase separation
- control, operation and maintenance methods
Industrial training systems

Everything from basic to advanced

Basic

Intermediate

Advanced

GUNT training plants help you to reach excellence in your instructional practice

Areas, where GUNT is active:
- chemical plant operations
- power plant operations
- natural gas plant operations
- oil refinery operations
- wastewater treatment operations
- drilling for oil & gas
- biofuel operations
- wind energy
- electrician training
- HVAC training
- plumbing training
...and many other

GUNT trainings plants help you to reach excellence in your instructional practice.

MT 140 Assembly station: piston compressor
Ideal entry-level device for demonstration, installation, maintenance and repair.

RT 396 Pump and valves test stand
Deepen and apply previously acquired knowledge.
MMTS – Mechanical Maintenance Training System

Training plant for maintenance and operation with distributed control system and with fully functioning real-world components such as:
- compressors
- pumps
- heat exchangers
ET 805
Steam power plant 20kW with process control system

Nowadays large process engineering systems are managed with distributed control systems. The ET 805 Steam power plant is specifically designed for training purposes in the field of power plant engineering with process control systems. Due to the size and complexity of the system, in many aspects the operating behaviour corresponds to that of actual large-scale plants.

The plant consists of four separate modules and can therefore be flexibly adapted to the space available in the laboratory.

Module A
Steam generator with superheater and feedwater treatment

Module B
Steam turbine with generator and condenser

Module C
Wet cooling tower

Module D
Control station
Operation of the plant is fully monitored and controlled by the process control system.
ET 405 Heat pump for cooling and heating operation

With suitable arrangement of compressor, condenser and evaporator, the same heat pump can be used for heating and for cooling. In the air conditioning of buildings this has the advantage that the rooms are heated in the winter and cooled in the summer. The provision of hot water is also possible. The heat source is always of central importance in heat pump technology. The design of the heat pump is particularly important in order to be able to use the existing heat sources effectively at a low temperature level.

ET 405 enables the investigation of a multitude of component arrangement options. A compressor, a condenser (heat exchanger with fan) and two evaporators with fan (refrigeration stage and freezing stage) are available. A coaxial coil heat exchanger can optionally be operated as an evaporator or a condenser. It connects the heat pump circuit to another circuit filled with a glycol-water mixture.

Different operating modes for typical applications

Two evaporators connected in series or parallel

The two evaporators can optionally be connected parallel or in series. It is also possible to operate only one evaporator. The condenser 9 operates as an air heater. At both evaporators, 3 the heat is absorbed from the environment.

Coaxial coil heat exchanger as evaporator (cooling)

The liquid refrigerant is expanded using a thermostatic expansion valve 2 and evaporated in the coaxial coil heat exchanger 8. This cools the glycol-water mixture. The condensation of the refrigerant takes place in the air-cooled finned tube heat exchanger 9. In the tank 6 the glycol-water mixture absorbs heat from the pipe coil through which water flows.

Coaxial coil heat exchanger as condenser (heating)
The refrigerant steam flows through the coaxial coil heat exchanger 8. Here the refrigerant is condensed and heats the glycol-water mixture. The refrigerant then flows through two evaporators 3 which can optionally be connected in parallel or in series. The glycol-water mixture discharges its heat in the tank 6 to a water-cooled pipe coil.

Cooling and heating using the heat pump

Gain: cooling

During cooling the absorbed heat at the heat pump provides the gain. It is absorbed from a room and discharged into the environment. Electrical energy to operate the compressor of the heat pump is required for this purpose.

Gain: heating

During heating the heat discharged by the heat pump is the gain. The heat pump absorbs heat from the environment and discharges it to the room.

1 environment, 2 absorbed heat, 3 heat pump, 4 discharged heat, 5 electric energy
Renewable energy

With the increasing concerns regarding climate change arising from increasing carbon dioxide levels and other adverse environmental impacts of industrial processes, there are widespread economic, ethical, legislative and social pressures on engineers to develop technologies and processes that have reduced carbon and environmental impact.

The aim of this unit is to introduce students to renewable energy resources and technologies, including current storage and generation technologies, and explore their advantages and limitations.

On successful completion of this unit students will be able to determine the optimum combination of renewable energy technologies and evaluate their efficiencies.

Students will also be able to describe how to conduct a cost-benefit analysis to determine the most viable option between renewable and conventional energy sources.

Topics included in this unit:
- Wind power
- Hydropower
- Solar energy
- Biomass
- Geothermal energy
- Energy storage systems

Learning outcomes:
- explore potential renewable energy resources, including current generation technologies
- correct use of photovoltaic solar modules and modern flat collectors
- technological fundamentals of solar cells
- parameters affecting solar thermal heat
- energy conversion in water turbines
- comparing turbine types and characteristics
- how does the real wind supply and electricity demand affect the yield from wind power plants
- chemical-electrical energy conversion
- shallow geothermal energy
- bioethanol, biogas, biodiesel

Topics:
- Hands-on teaching engineering
- Renewable energy
- Wind power
- Hydropower
- Solar energy
- Biomass
- Geothermal energy
- Energy storage systems
Wind power

ET 210
Fundamentals of wind power plants

Wind power plant with rotor blade adjustment and yaw angle adjustment:
- conversion of kinetic energy into electrical energy
- power adjustment by means of speed adjustment
- power adjustment by means of rotor blade adjustment
- behaviour in the case of oblique flow
- comparison of different rotor blade shapes
- recording of characteristic diagrams
 > determination of the power coefficient as a function of the tip-speed ratio and rotor blade adjustment angle
 > determination of the power coefficient as a function of the tip-speed ratio and yaw angle

Replaceable rotor blades:
Measurement on different blade profiles (production by means of 3D printing)

Setup of the wind power plant:
1 rotor blade, 2 hub, 3 tower, 4 aeromotor, 5 generator, 6 coupling, 7 rotor blade adjustment

Analysis of measurement data with GUNT software:
Power coefficient vs. tip speed ratio at different rotor blade pitch angles

ET 220
Energy conversion in a wind power plant

- conversion of kinetic wind energy into electrical energy
- function and design of a stand-alone system with a wind power plant
- determining the power coefficient as a function of tip speed ratio
- energy balance in a wind power plant
- determining the efficiency of a wind power plant

Connection to ET 220 or ET 200.10; outdoor installation allows practically relevant investigations

ET 220.01
Wind power plant
- conversion of kinetic wind energy into electrical energy
- design and function of a wind power plant in stand-alone operation
- energy balance of a wind power plant under real wind conditions
Hydropower

HM 450C
Characteristics of hydraulic turbomachines

The trainer HM 450C is able to operate pump and turbine at the same time. Relevant measured values are recorded contemporaneously at both turbomachines. Thus the trainer can be used as a *pumped storage plant*.

- **HM 450.01** Pelton turbine
- **HM 450.02** Francis turbine

Adjusting elements

- Needle nozzle and impeller of the Pelton turbine
- Adjusting knob for the needle nozzle
- Position of the guide vanes in the Francis turbine
- Vanes and impeller of the Francis turbine

The trainer HM 450C is able to operate pump and turbine at the same time. Relevant measured values are recorded contemporaneously at both turbomachines. Thus the trainer can be used as a *pumped storage plant*.

HM 450C
Base unit for turbines

HM 287
Experiments with an axial turbine

HM 288
Experiments with a reaction turbine

HM 289
Experiments with a Pelton turbine

HM 290
Base unit for turbines

HM 291
Experiments with an action turbine
Solar energy: photovoltaics

Using photovoltaics in an experimental setup

ET 250 Solar module measurements

HL 313.01 Artificial light source

The photovoltaic DC current from ET 250 is either fed to the input of ET 255 or ET 250.01 or ET 250.02.

The trainer ET 255 can either be run with actual solar modules or with the built-in photovoltaic simulator.

ET 255 Using photovoltaics: grid-connected or stand-alone

ET 250.01 Photovoltaic in grid-connected operation

ET 250.02 Stand alone operation of photovoltaic modules

ET 252 Solar cell measurements

Investigation of the properties of solar cells; objective measurements by extensive temperature control of solar cells.

Learning objectives / experiments
- physical behaviour of solar cells under varying illuminance and temperature
- recording of current-voltage curves
- calculating current strength and achievable output based on the single diode model
- how illuminance and temperature affect the curves
- interconnecting solar cells in parallel and series connection
- effect of bypass diodes
- power degradation due to shading

Patch panel for different connection possibilities: the four solar cells can be interconnected in a number of ways, e.g. individual cells can be bridged by bypass diodes in order to examine differences in power loss such as caused by shaded cells.
Solar energy: solar thermal energy

HL 313
Domestic water heating with flat collector

Demonstration of the conversion of the sun’s radiation energy into heat and the storing of that heat

Learning objectives / experiments
- familiarisation with the functions of the flat collector and the solar circuit
- determining the net power
- relationship between flow and net power
- determining the collector efficiency
- relationship between temperature difference (collector/environment) and collector efficiency

ET 202
Principles of solar thermal energy

Determining characteristic parameters of a solar thermal system; model fitted with artificial radiation source

Learning objectives / experiments
- design and operation of a simple solar thermal system
- determining the net power
- energy balance on the solar collector
- influence of illuminance, angle of incidence and flow rate
- determining efficiency curves
- influence of various absorbing surfaces

The illustration shows measured values for the efficiency as a function of the collector temperature. A special coating on the absorber allows higher efficiencies.
Renewable energy

Green building

The HL 320 modular system allows you to investigate heating systems with various renewable and traditional energy sources. Solar thermal energy can be combined with heat generation from heat pumps.

The modular design of the HL 320 system makes it possible to achieve different combinations and configurations.

Components for the combined use of renewable heat sources in the domestic supply:
1. flat collector
2. heat exchanger
3. hot water storage tank
4. heat pump
5. geothermal absorber:
 - hot heat transfer fluid
 - cold heat transfer fluid

Example for a system diagram for complementary heating and domestic water heating with a solar thermal collector and a heat pump (combination 3).
Biomass

The CO₂ cycle
Photosynthesis, with the aid of sunlight, enables plant growth. In this process CO₂ from the atmosphere, as well as water and inorganic substances from the plants, are absorbed and converted into energy-rich organic compounds. This biomass can be regarded as the product of a biochemical process, in which a portion of the absorbed sunlight is stored in the form of chemical energy. Being able to use the biomass as an energy source in various technical processes requires special treatment processes. These include simple physical processes as well as more complex thermochemical and biological processes.

Bioethanol

CE 640 Biotechnical production of ethanol
Discontinuous conversion of starch-containing bio-resources into ethanol

- familiarization with the necessary individual steps and system components for production of ethanol:
 - gelatinization by steam injection
 - liquefaction by use of alpha-amylase
 - saccharification by use of gluco-amylase
 - fermentation: conversion of sugar into ethanol by yeast cultures under anaerobic conditions
 - distillation: separation of ethanol from the mash

CE 642 Biogas plant
Two-stage continuous degradation of organic substances. First stage: hydrolysis and acidification, second stage: anaerobic degradation

- achieving a stable operating state
- influence of the following parameters on the biogas generation:
 - temperature
 - substrate
 - volumetric loading
 - pH value
- influence of the operation mode on the biogas yield:
 - single stage or dual stage
 - with and without post-fermentation
 - continuous and discontinuous
- determining the following parameters depending on the operating conditions:
 - biogas yield
 - biogas flow rate
 - biogas quality

Biodiesel

CE 650 Biodiesel plant
Chemical transesterification of vegetable oils

- production of biodiesel from vegetable oil:
 - influence of dwell time
 - influence of temperature
- chemical transesterification
 - phase separation in the gravity field
 - distillation
- liquid-liquid extraction
- approach of a continuous process consisting of several basic operations
The dual well system is an open geothermal system without thermal retroaction on the heat source. It can be used for heating or cooling purposes, where groundwater serves as a geothermal heat source or heat sink. These systems require sufficient groundwater to be present at the site in layers near the surface.

Groundwater is pumped from a well to the surface. After thermal use the groundwater is returned to the soil via a discharge well to conserve the groundwater reservoir. A sufficient distance between the well and discharge well prevents a hydraulic short cut.

Geothermal probes are heat exchangers that are inserted vertically or at an angle into the ground. In most cases, these consist of plastic pipes inserted into boreholes. The probes can be designed in different ways. Geothermal probes are a closed geothermal system with thermal retroaction on the ground.

Geothermal probes are heat exchangers that are inserted vertically or at an angle into the ground. In most cases, these consist of plastic pipes inserted into boreholes. The probes can be designed in different ways. Geothermal probes are a closed geothermal system with thermal retroaction on the ground.
Energy storage systems

Energy conversion

ET 292
Fuel cell system
Water-cooled polymer-membrane fuel cell combined heat and power
- conversion of chemical energy into electrical and thermal energy
- function and design of a fuel cell system
- relationships of fuel cell operating parameters
- effects on the electrical performance of fuel cells
- recording and visualisation of all relevant voltage/current characteristics
- calculation of relevant variables

HM 143
Transient drainage processes in storage reservoirs
Demonstration of the function of a rainwater retention basin and a storage lake
- demonstrating transient drainage processes in two rainwater retention basins located one behind the other
- demonstrating transient drainage processes in two storage lakes located one behind the other
- recording oscillations of the water level in a surge chamber after water hammer
- recording and displaying water level fluctuations

Energy storage

ET 420
Ice stores in refrigeration

Learning objectives / experiments
- design and operation of an energy-efficient refrigeration system
- function and operation of an ice store
 - charge
 - discharge
- energy flow balance
- energy transport via different media
- compression refrigeration cycle in the log p-h diagram
- function and operation of a wet cooling tower
- function and operation of a dry cooling tower
Mechatronics, electrical and electronic principles, fault finding

Auto-focus cameras, car cruise control and automated airport baggage handling systems are examples of mechatronic systems. Mechatronics is the combination of mechanical, electrical and computer-controlled engineering working together in automated systems and ‘smart’ product design.

Electrical engineering is mainly concerned with the movement of energy and power in electrical form, and its generation and consumption. Electronics is mainly concerned with the manipulation of information, which may be acquired, stored, processed or transmitted in electrical form. Both depend on the same set of physical principles, though their applications differ widely. A study of electrical or electronic engineering depends very much on these underlying principles; these form the foundation for any qualification in the field, and are the basis of this unit.

In this unit we focus on the specialist pathway for mechatronic engineers for refrigeration technology.

Among the topics included in this unit are:
- Consideration of component compatibility
- Constraints on size and cost
- Control devices used
- British and/or European standards relevant to application
- Sensor types and interfacing
- Simulation and modelling software functions
- System function and operation
- Advantages and disadvantages of software simulation
- Component data sheets
- Systems drawings
- Flowcharts
- Wiring and schematic diagrams

Learning outcomes

- Explain the design and operational characteristics of a mechatronic system
- Design a mechatronic system specification for a given application
- Examine the operation and function of a mechatronics system using simulation and modelling software
- Identify and correct faults in a mechatronic system
- Apply an understanding of fundamental electrical quantities to evaluate simple circuits with constant voltages and currents
- Evaluate simple circuits with sinusoidal voltages and currents
- Describe the basis of semiconductor action, and its application to simple electronic devices
- Evaluate the effects of faulty or inefficient systems
Mechatronics
ET 910 Refrigeration training system

Modular system for experiments in the field of refrigeration engineering

ET 910 base unit with components for basic experiments and advanced experiments

A functional workplace includes:
- ET 910.05 Refrigeration laboratory workplace
- ET 910.10 Refrigeration components for basic experiments
- ET 910.11 Refrigeration components for advanced experiments

By using modular plates the experiments can be set-up flexibly and clearly. The use of lockable hoses minimises

ET 910.10
Refrigeration components for basic experiments

ET 910.11
Refrigeration components for advanced experiments

Practice project for a comprehensive understanding

Preparation
- Read and understand refrigeration system flow diagrams and simple electric circuit diagrams

Experimental setup
- Familiarisation with the real refrigeration components corresponding to the flow diagrams

Commissioning
- Practical tasks, such as evacuating, filling and leak tests in accordance with relevant regulations and guidelines

Experimental procedure
- Grasp the function of the system
- Optimisation of controllers and expansion elements by the adjustment

Evaluation
- Temperature and pressure measurements
- Measured value acquisition and graphical representation in a log p-h diagram
- Comprehend the change of state

Components
- Collector
- Condenser
- Compressor
- Evaporator
- Thermostatic expansion valve
- Flow meter
- Sight glass with filter/drier
- Intake side manometer
- Delivery side manometer
- Liquid separator

Set of accessories ET 910.12
with cables, hoses etc.

A condensing unit,
B refrigeration chamber heater/fan,
C off switch 3-pole,
- phase (L),
- neutral conductor (N),
- protective conductor (PE)

p-h state diagram for C2H2F4 46,76% Norfluran C3H2F4 53,24% 2,3,3,3 Tetrafluorpropen

- Pressure p in bar abs
- Temperature t in °C
- Enthalpy h in kJ/kg
- Entropy s in kJ/(kg · K)
- Specific weight υ in m³/kg

Enter measured values in the log p-h diagram and draw the cyclic process.
Electrical engineering in refrigeration

Refrigeration systems contain many electrical components, such as compressors, pressure switches, thermostats, fans, solenoid valves or controls. Therefore, electrical engineering is an important field in refrigeration. This is reflected in the high share of electrical engineering content in the training of the mechatronics engineer for refrigeration. The mechatronics engineer for refrigeration should be capable of planning, designing and commissioning electrical systems.

In the service field the testing, fault finding and repair of electrical systems is also an important item. During service you are often confronted with incomplete documentation, which is why the mechatronics engineer for refrigeration must be able to analyse the system and comprehend its operation. This requires a good basic knowledge of electrical engineering.

![Electric connection of a refrigerant compressor to the alternating current network](image)

The connection of a refrigerant compressor and its protective elements to the single phase alternating current network is part of the standard activities of the mechatronics engineer for refrigeration. This task requires the correct preparation of an electric circuit diagram (flow diagram) and the practical wiring of the electrical components in the refrigeration system.

The wiring of the compressor CM consists of three functional groups:

- controller, consisting of main switch S1 and thermostat S2
- safety module, consisting of pressure switches (Pressstat) F1, F2 and overheat protection of the compressor F3
- start-up circuit, consisting of the start-up relay S3 and start-up capacitor C1

![Start-up circuits for single phase compressor motors](image)

Drive motors for refrigerant compressors require a high start-up torque. For low compressor capacities single phase alternating current motors are used as drive motors. These are of simple design, maintenance-free, cheap and can run inside the refrigerant (hermetic compressor).

Due to their principle of operation these motors do not have any or only a low torque at rest. To increase the torque the motors must be equipped with a start-up circuit. Here an auxiliary winding is additionally supplied with current via a capacitor until the operating speed is reached. The automatic switching on and off of the auxiliary winding can be implemented via different options.

The most common is a start-up relay whose winding is connected in series to the main winding. When starting the motor a very high current first flows through the main winding, the start-up relay responds and activates the auxiliary winding via the capacitor. Once the motor has reached its speed, the current through the main winding drops. If the current falls below a certain value, the relay is released and the auxiliary winding is disabled.

The switching of the auxiliary winding can also take place via a centrifugal force switch directly dependent on the speed. In some motors the auxiliary winding is permanently activated via an operating capacitor. Here a second start-up capacitor is connected in parallel during start-up to increase the torque.

Another particularly wear-free method is the use of a PTC element. This heats due to the current flowing in the auxiliary winding and increases its resistance. This reduces the current through the auxiliary winding after a brief period of time.
Mechatronics, electrical and electronic principles, fault finding

Electrical and electronic principles

ET 144
Electrical installation in refrigeration systems

- Set-up and wiring of typical electrical circuits for refrigeration circuits
 - read, understand, wire and test electric circuit diagrams
 - design and operation of electrical components from refrigeration
 - start-up capacitor
 - operating capacitor
 - time relay
 - timer
 - circuit breaker
 - design and testing of a safety chain
 - star/delta connection
 - change of direction of rotation in an alternating current circuit
 - safety aspects when handling mains voltage

ET 171
Electrical connection of refrigerant compressors

- Use of a real refrigerant compressor
 - read, understand, wire and test electric circuit diagrams for refrigerant compressors
 - design and operation of electrical components of refrigerant compressors
 - start-up capacitor
 - start-up relay
 - time relay
 - timer
 - circuit breaker
 - design and testing of a safety chain
 - representation methods in electrical engineering
 - symbols
 - circuit diagrams
 - safety aspects when handling mains voltage

ET 930
Evaporator control with electronic expansion valve

- Practical programming of a modern refrigeration controller
 - modern refrigeration controller with electronic expansion valve
 - functional principle of the controller
 - thermostat function
 - daytime and night-time operation
 - operation with open and closed freezer
 - defrost functions
 - safety functions
 - alarm functions
 - monitoring of the components
 - controller programming
 - fault finding

ET 172
Electrical faults in refrigerant compressors

- Investigation of important electrical components from refrigeration
 - electrical connection of refrigerant compressors
 - read and understand electrical circuit diagrams
 - design and operation of the electrical components of a refrigerant compressor
 - start-up capacitor
 - start-up relay
 - operating capacitor
 - pressure switch
 - thermostat
 - design and testing of a safety chain
 - fault finding in electrical components
 - in idle state
 - under mains voltage

ET 170
Electrical faults in simple air conditioning systems

- Design and operation of electrical components in a simulated air conditioning system
 - electrical design and principle of operation of simple air conditioning systems
 - read and understand electrical circuit diagrams
 - design and operation of electrical components in an air conditioning system
 - start-up capacitor
 - start-up relay
 - pressure switch
 - thermostat
 - fault finding in electrical components
 - in idle state
 - under mains voltage

ET 174
Electrical faults in full air conditioning systems

- Design and operation of electrical components in a complex simulated air conditioning system
 - electrical design and operation of full conditioning systems
 - reading and understanding electrical circuit diagrams
 - design and operation of electrical components in an air conditioning system
 - start-up capacitor
 - start-up relay
 - operating capacitor
 - pressure switch
 - solenoid valve
 - defrost timer
 - float switch
 - thermostat
 - hygrostat
 - coil
 - fault finding in electrical components
 - in idle state
 - under mains voltage
Electro, pneumatic and hydraulic systems

Hydraulics and pneumatics incorporate the importance of fluid power theory in modern industry. This is the technology that deals with the generation, control, and movement of mechanical elements or systems with the use of pressurised fluids in a confined system. In respect of hydraulics and pneumatics, both liquids and gases are considered fluids. Oil hydraulics employs pressurised liquid petroleum oils and synthetic oils, whilst pneumatic systems employ an everyday recognisable process of releasing compressed air to the atmosphere after performing the work.

Topics included in this unit

- Parameters of pneumatic and hydraulic systems
- Electro, pneumatic and hydraulic systems

Electro, pneumatic and hydraulic systems

The aim of this unit is to develop students’ knowledge and appreciation of the applications of fluid power systems in modern industry. Students will investigate and design pneumatic, hydraulic, electro-pneumatic and electro-hydraulic systems. This unit offers the opportunity for students to examine the characteristics of fluid power components and evaluate work-related practices and applications of these systems.

Learning outcomes

- Level 3: calculate the parameters of pneumatic and hydraulic systems
- Level 4: identify the notation and symbols of pneumatic and hydraulic components
- Level 4: examine the applications of pneumatic and hydraulic systems
- Level 4: investigate the maintenance of pneumatic and hydraulic systems
Parameters of pneumatic and hydraulic systems
Knowledge foundation prior to industrial application

Electro, pneumatic and hydraulic systems

WL 102
Change of state of gases

Isothermal and isochoric change of state of air
- demonstrating the laws of state changes in gases experimentally
- isothermal change of state, Boyle-Mariotte law
- isochoric change of state, Gay-Lussac’s 2nd law

WL 103
Expansion of ideal gases

Determination of the adiabatic exponent according to Clément-Desormes
- determination of the adiabatic exponent according to Clément-Desormes
- adiabatic change of state of air
- isochoric change of state of air

HM 150.07
Bernoulli’s principle

Static pressure and total pressure distribution along the Venturi nozzle
- energy conversion in divergent/convergent pipe flow
- recording the pressure curve in a Venturi nozzle
- recording the velocity curve in a Venturi nozzle
- determining the flow coefficient
- recognising friction effects

HM 240
Principles of air flow

Determining the fan characteristic curve
- recording a fan characteristic
- in conjunction with the power meter HM 240.02
 » determining the fan efficiency
- in conjunction with corresponding accessories
 » velocity distribution in the pipe
 » velocity distribution behind a cylinder subject to transverse incident flow
 » pressure distribution around a cylinder subject to transverse incident flow
 » friction losses in pipes, pipe bends and pipe angles
 » recording the cooling curve of a copper cylinder subject to incident flow
 » determining the heat transfer coefficients from the cooling curve

The HM 220 experimental plant allows an extensive range of experiments with the varied accessories:

Measuring and investigating the air flow via a Pitot tube
- in a free jet
- within a pipe

Boundary layer measurements on a flat plate in longitudinal flow via a Pitot tube (HM 220.02 accessory)

Use of various pipe elements
- adjustment of the air flow through a frequency converter
- up to 20 pressure measuring points
- calculation of the volumetric flow rate and the flow velocity from the measurement results
- representation of system characteristics
- recording the different velocity profiles in both the free jet and the pipe cross-section
- representation of the increase in pressure loss due to pipe friction at different pipe elements
- optimal formation of the air flow due to a low-loss inlet and the large length of the pipe section

Change in volumetric flow rate
- in an orifice plate or nozzle

Measurement and investigation of air flow
- via a Venturi tube (accessory HM 220.01)
- in different pipe fittings

Boundary layer measurements on a flat plate in longitudinal flow via a Pitot tube (HM 220.02 accessory)
Electro, pneumatic and hydraulic systems

RT 700
Training system: fundamentals of hydraulics

Complete training system providing an experimental introduction to the fundamentals of hydraulics
- comprehensive experimental introduction to the fundamentals of hydraulic drive and control engineering
- familiarisation with terms and symbols
- representation of hydraulic circuits
- drive unit
- multi-way valves and drives
- shut-off and flow control valves
- pressure valves and pressure switches
- hydraulic accumulators
- application circuits
- commissioning and maintenance

RT 701
Components set electrohydraulics

Set of electrohydraulics components for hydraulics trainer RT 700
- together with RT 700, the following experiments are possible (among others)
 - locking
 - sequence control
 - hold a load
- experimental components
 - 1 plate with electric switching elements, 2 electric limit switches
 - 2 relays, 1 adjustable time relay
 - 2 4/2-way valves with spring return
 - 1 4/3-way valve, spring-centered, A, B, P, T closed in centre position
 - 1 4/3-way valve, spring-centered, A and B closed

RT 770
Training system: pneumatics, electro-pneumatics and PLC

Complete training system providing an experimental introduction to the fundamentals of pneumatics and electro-pneumatics, also with PLC
- physical principles of pneumatics and electro-pneumatics
- fundamentals of, and terms used in, process control
- design and function of pneumatic components
- logic elements, logic diagram
- multi-way valves, pressure, shut-off and flow control valves
- controls with starting and setup conditions (automatic/manual/jog mode)
- controls with boundary conditions
- routing and time controls (process and time controlled sequencers)
- position-dependent controls
- troubleshooting and commissioning

RT 710
Hydraulic servo system

Hydraulic position control circuit with adjustable load conditions
- familiarisation with the mode of operation of a hydraulic position control loop with adjustable load conditions
- reading and understanding circuit diagrams
- replacing springs and adjusting the damper
- influence of load and system pressure on control accuracy
- influence of the amplifier constants on the stability of the closed control loop
- recording the frequency response
Instrumentation, control systems, automation, and distributed control systems

Instrumentation and control can also be described as measurement automation, which is a very important area of engineering and manufacturing. It is responsible for the safe control of a wide range of processes from power stations to manufacturing facilities and even the cruise control in cars.

Control engineering is usually found at the top level of large projects in determining the engineering system performance specifications, the required interfaces, and hardware and software requirements. In most industries, stricter requirements for product quality, energy efficiency, pollution level controls and the general drive for improved performance, place tighter limits on control systems.

With increased complexity and greater emphasis on cost control and environmental issues, the efficient control of manufacture and processing plant becomes ever more important. While small and medium scale industries require Programmable Logic Controller (PLC) and Supervisory Control and Data Acquisition (SCADA) technologies, large scale applications require Distributed Control Systems (DCS).

This unit introduces students to the important principles, components and practices of instrumentation in the controlling of a process system, together with the terminology, techniques and components that are used in such a system.

Among the topics included in this unit are:
- instrumentation systems,
- instrumentation signal terminology,
- signal conversion and conditioning,
- process control systems,
- process controller terminology,
- system terminology and concepts,
- system tuning techniques and application of predicted values to a control system.

The topic distributed control systems introduces students to:
- the applications in industrial measurements and control engineering,
- different types of industrial networking used in control and instrumentation,
- the analysis of the performance of a given control system.

Learning outcomes

- understand microcontrollers and their applications,
- apply open and closed loop control,
- use sensors and transducers in control and robotic systems,
- understand the basic principles of industrial instrumentation,
- identify the instrumentation systems and devices used in process control,
- investigate the industrial process control systems,
- analyse the control concepts and technologies used within an industrial process,
- apply predicted values to ensure stability within a control system,
- discuss the basic concepts of control systems and their contemporary applications,
- analyse the elements of a typical, high-level control system and its model development,
- analyse the structure and behaviour of typical control systems,
- explore the impact of automated systems in modern control processes,
- evaluate the basic concepts, architecture, operation and communication of Distributed Control Systems.
Instrumentation, control systems, automation, and distributed control systems

Instrumentation systems: measuring methods

With the aid of automation and process control engineering, processes are monitored and influenced as they happen. This is enabled by the measurement and control of variables such as flow rate, pressure, temperature, and concentration.

To control processes, first of all it is necessary to record the process variables. The different properties of the process variables, but also of the substances used and the respective aggregate states, make different measuring methods necessary.

- mode of operation and application of different sensors
 - one-way photoelectric barrier
 - reflex photoelectric barrier
 - inductive proximity switch
 - capacitive proximity switch
 - reflex photoelectric proximity switch, infrared
 - reflex photoelectric proximity switch, red light
 - limit switch
 - reed contact

- familiarisation with, and carrying out of the calibration of an electronic pressure sensor
 - plotting the sensor output signal dependent on the pressure applied
 - familiarisation with the design and operation of a piezo-resistive electronic pressure sensor
 - familiarisation with the installation and connection of the pressure sensor
 - information on applications, measuring ranges and accuracies of typical electronic pressure sensors

Flow rate measurement

The flow meters shown on this page transmit the information about the flow rate as an electrical signal. The electrical signal can be processed via digital controller.

- HM 500 Flow meter trainer together with the flow meters HM 500.03 – HM 500.16
 - different flow meters and their principles of operation
 - calibration of different flow meters
 - position dependency of flow meters
 - plotting and comparison of pressure loss curves

Learning objectives / experiments

- HM 500 Flow meter trainer
- HM 500.03 Rotameter with transducer
- HM 500.05 Ultrasonic flow meter
- HM 500.10 Paddle wheel flow meter
- HM 500.11 Vortex flow meter
- HM 500.04 Electromagnetic flow meter
- HM 500.16 Baffle plate flow meter

For some of the flow meters the position is important for correct operation. The rotameter can only be used vertically upright mounting.

IA 120
Principles of industrial sensors

IA 110
Calibrating a pressure sensor
Process control is a key area in any study of automation. With this model series, GUNT offers six systems providing an introduction to the fundamentals of process control through the use of experimentation. Software plays a key role as an integral component of the equipment concept, in the sense of hardware/software integration (HSI). It relieves students from routine activities and supports interactive action when they are experimenting with new approaches. The effects of changes to control parameters or disturbance variables on the system behaviour can be investigated quickly and easily. In contrast to purely computer-based simulation, these actual models of controlled systems provide a closer link to the real world, and so aid understanding.

The network capability of the software enables teacher/student systems to be established.

Advantages
- compact benchtop models
- ideally suited to multi-user applications
- typical control systems from the field of process control such as flow, level, pressure, temperature, speed and position
- high level of observability of processes based on transparent elements (covers, containers, lines)
- richly featured software
- computer interface with USB port

Comprehensive experiment programme for each trainer:
- control loop analysis
- influence of controller parameters on control action and disturbance response
- stability of the open and closed loop
- controller optimisation

Comprehensive instruction material sets out the fundamentals and provides a step-by-step guide through the experiments.

Software
- State-of-the-art control and measurement data acquisition software based on LabVIEW for Windows
- software controller in real time, possible with real controlled system or simulation options
- setpoint profiles (programme controller)
- display and storage of all process variables
- network capability
- language switching

Software functionality
- process schematics with online display of all process variables
- user control and parameter setting of the software controllers
- manual control of actuators and disturbance feedforward control
- recording of step responses for system identification
- manual and automatic controller optimisation
- stability tests
- controlled system simulations for simplified system models
Control systems: digital industrial controllers

Nowadays most industrial processes are automated. Process controllers are at the heart of the automation of process applications. State-of-the-art digital process controllers offer a level of functionality which would have been inconceivable some years ago. Alongside extensive configuration and parameter setting functions to adapt to the control task, they also permit interconnected networking. Thus, process automation by way of centralised process control systems or distributed control systems (DCS) is possible. The range of equipment on the following pages provides a step-by-step introduction to process automation and process control engineering.

RT 350
Operation of industrial controllers

Simulation of controlled systems; digital controller with freely selectable parameters

- basic concept of an industrial controller
 - operator control levels
 - parameter level
 - configuration level
- learning about basic terminology and methods of process control
 - static and dynamic transfer function
 - step response
 - reference variable step
 - closed control loop
- setting controller parameters
 - setting input and output channels
 - scaling displays
 - using PC-based configuration tools

RT 380
Optimization of control loops

Tuning the controller to the controlled system; software simulation of the most common controlled systems

- learning basic terminology and methods involved in process control
 - control loop comprising controller and controlled system
 - difference between open and closed loop control
- adapting the controller to different controlled systems
 - determining the controlled system parameters
 - choosing optimum controller parameters
- using commonly applied tuning rules
- investigating control and disturbance response
- investigating the stability of the closed control loop

RT 350 Operation of industrial controllers

The RT 350 is used to practice parameter setting and configuration of a state-of-the-art process controller. This can be carried out either manually by way of the front panel buttons or from a PC by means of a special software programme via an interface. In this case the controller is linked to the PC by a serial port.

RT 380 Optimization of control loops

Tuning of a controller for optimal controlled system performance can be practised with the RT 380. The controller works together with a simulated system model. The simulation is created on a PC using a special software programme. A wide variety of controlled system models is available. A configuration programme enables user-friendly, intuitive parameter setting of the controller from the PC.
RT 450 The modular process automation training system: closed-loop and open-loop control

RT 450 offers you a flexible and versatile learning platform to provide students with a practical introduction to a wide range of topics and issues in the field of process automation. The close interlinking of practical skills with theoretical/analytical aspects promotes thorough learning.

RT 450.10
Continuous controller module
- Functional range of a digital process controller
- Configuration, parameterisation and operation via keyboard
- Familiarisation with an industry-standard configuration software (RT 450.14, available as an option)
- Signal links and standard current signals
- Profinet communication (RT 450.41, available as an option)

RT 450.14
Software for controller configuration
- All the functions which can be realized by way of the keyboard of the process controller can also be realized using the IBIS-R+ configuration software.

RT 450.20
Control valve, pneumatically driven, Kvs 0.4
- Functional range of an electro-pneumatically operated control valve
- Recording of the flow rate characteristic during the experiment (flow rate dependent on degree of opening)
- Standard current signals and correct electrical wiring and interconnection

RT 450.01
Controlled system module: level
- Setting up a level control loop
- Comparison of different sensors for level measurement
- Level control against trapped-air cushion
- Level / flow cascade control (with RT 450.02)

RT 450.02
Controlled system module: flow
- Setting up of a flow control loop
- Comparison of different sensors for flow measurement
- Level / flow cascade control (with RT 450.01)

RT 450.03
Controlled system module: pressure
- Planning, setting up, testing, optimising and assessing pressure control loops with different objectives and components
- Constructing a 1st order pressure control system
- Constructing a 2nd order pressure control system
- Design and function of different instrumentation and control components
- Technical terminology and symbols in industrial control engineering
- Practical exercises: Implementing process and signal lines
- Commissioning and troubleshooting of process engineering systems

RT 450.04
Controlled system module: temperature
- Planning, setting up, testing, optimising and assessing temperature control loops with different objectives and components
- Design and function of different instrumentation and control components
- Technical terminology and symbols in industrial control engineering
- Practical exercises: Implementing process and signal lines
- Commissioning and troubleshooting of process engineering systems

Different types of flow rate sensors are available, e.g. electromagnetic.

Different types of temperature sensors are available, e.g. PT 100.
RT 450 The modular process automation training system: closed-loop and open-loop control

RT 450.42
PLC module with software

- Module for exercises using a programmable logic controller (PLC)
- Expansion of analog inputs and outputs
- USB interface for programming on computer
- PLC programming software
- Programming languages: Statement List (STL), Ladder Diagram (LD), Structured Text (ST), Function Block Diagram (FBD)
- Profibus module (RT 450.43) for communication with network available as an option

Input and output module

- Functional range of a PLC
- Programming a PLC using included programming software
- Electrical connections and signal links
- Profibus communication

RT 450.40
Visualisation software

Computer-aided communication between automation components over a field bus is a standard approach in industrial control systems.

The RT 450 training system works with Profibus DP. A Profibus card performs the function of the field bus master and serves as the communications interface (CIF). The field bus slaves – in this case the controller module and the PLC module – must likewise be field bus-compatible. The components must be equipped with a Profibus module to facilitate this operation.

- Principles of communication when using computerised automation over field bus
- Familiarisation with the hardware components and wiring
- Installation and configuration routines
- Using an application
 - Closed-loop and open-loop control visualisation software
- Familiarisation with the system elements
- Profibus card as communications interface
 - OPC server
 - System configurator

Profibus connections on RT 450

- Profibus card
- Connections on base system control cabinet
- Chart feature to represent time functions in a control system

GUNT visualisation software: start menu

RT 450.10
Station address: 1
FMS/DP CIF50-PB

RT 450.11
Station address: 11
DP Slave Protronic/Digitri

RT 450.42
Station address: 20
DP Slave LE4-504-BT1

RT 450 MODULAR TRAINING SYSTEM main window

GUNT PROCESS CONTROL SOFTWARE FOR RT 5X2-SERIES charts
RT 578
Control of four variables from process engineering

The RT 578 facilitates practical learning in the control of four controlled variables which are commonplace in process engineering.

- Familiarisation with industrial control loop components
- Setup, parameterisation and configuration on the controller
- Optimisation of controller settings
- Flow rate control
- Level control in closed tank with or without counter pressure

In all control loops, two different actuators are available for solving control engineering tasks.

Data acquisition

Process schematic

The trainer uses an industrial compact controller for the instrumentation of single control loops. Internally, it has a total of four individual controllers, which can be used independently from each other.

Digital controller

The trainer has three different actuators:

- **Heater**
 - Electrical screw-in cartridge for direct heating of water with a thermostat for temperature limitation

- **Pump**
 - A multiple stage centrifugal pump, speed adjustable with frequency converter

- **Control valve**
 - Electrically controlled, with pneumatic actuator drive, characteristic: equal percentage

Three-channel paperless recorder to record the control processes.

Experiment 1: Level control in the tank

Experiment 2: Flow rate control

Experiment 3: Pressure control in a closed tank

Experiment 4: Temperature control in a heating circuit
Distributed control systems

MPTR
Main Process Training Rig
Training plant for pipeline and pump systems, with distributed control system
L x W x H: 8.0 x 3.5 x 2.5 m
- two different water circuits
- complex process control system
- plant operation and maintenance

Data acquisition via software: time curve
Operation via touchscreen
Process schematic
Digitisation Industry 4.0 <-> Education 4.0

Industry 4.0 is the term that has been adopted to describe the ‘fourth’ industrial revolution currently underway, at present, in the manufacturing and commercial sectors of our society. It optimizes the computerization of industry 3.0 by successfully combining high performance computing, the internet and the development of advanced manufacturing technologies.

Key factors are:

- internet of things and the cloud
- autonomous equipment and vehicles
- robots
- additive manufacturing (3D printing)

Industry 4.0 is changing the way the world’s most successful companies produce the products that their global customers demand.

These same companies are also concerned with how to upskill their current workforce to take on new tasks made possible by Internet 4.0 and to recruit new employees with the right skills.

Education should pave the way for Industry 4.0 to fully exploit the potential of cyber-physical systems in the future.

How can GUNT help?

Different from other chapters in this catalogue, we cannot offer concrete learning outcomes on the topic digitisation. Therefore we cannot simply advise by offering certain experimental units. Rather is this topic digitisation part of the GUNT development philosophy and you can find digitisation in many elements and aspects throughout the entire GUNT programme.

GUNT as a company with its own R&D facilities and ultra-modern manufacturing production is on the Industry 4.0 track already for many years. Please use this particular chapter to discover the GUNT Industry / Education 4.0 philosophy. We would like to help you to develop ideas and support your teaching preparation by giving examples and ideas on the following pages.

• advanced manufacturing technology
• virtual engineering
• CAD/CAM

Learning outcomes

- recognise a range of advanced manufacturing processes and cite examples of where they are most effective
- evaluate the concept of the next industrial revolution to determine the impact on both manufacturers and the consumer
Modern digitisation techniques help to enhance your teaching process

Remote laboratories allow students to perform experiments on laboratory units over the internet without being near the actual equipment.

In a traditional proximal laboratory, the user interacts directly with the equipment by performing physical actions (e.g. manipulating with the hands, pressing buttons, turning knobs) and receiving sensory feedback (visual, audio and tactile). In a remote laboratory, the same interaction takes place at a distance with the assistance of the remote infrastructure that is responsible for conveying user actions and receiving sensory information from the equipment.

On the user’s side, the remote infrastructure provides a user interface that allows the experimental unit to be monitored and operated, while it also ensures that only one user can use an experiment at a time.

On the equipment side, the remote infrastructure:
- monitors the experimental unit, e.g. through the use of video cameras, microphones and other sensors
- controls the experimental unit, e.g. through the use of I/O interfaces, motors or other actuators
- ensures that the experiment is ‘cleaned up’ at the end of a user’s session by automatically resetting the experimental unit or putting it into a stable state.

Core of a remote infrastructure is the remote access, e.g. a remote desktop, which ensures the connection to access your work computer from anywhere. There are several possibilities how to set up the remote access. The customer decides which way he prefers and is responsible for the remote infrastructure of his laboratory.

GUNT teaching units form the backbone of a remote lab. These teaching units are for example:
- ET 915-Series: training system for refrigeration and air conditioning technology
- WL 110-Series: thermal processes in heat exchangers
- GUNT-Thermoline: fundamentals of heat transfer
- GUNT-Labline: fluid machinery

GUNT units at the university

Different possibilities for the remote access

Any number of clients with web interface and access data

Operation
- simple operation of the system via the software
- adjust operating parameters via respective button icons
- check and read off measured values

Characteristics curve
- representations of the characteristic curves make it easier to understand the respective physical mechanisms

Time dependency
- representation of the measured values as a function of time
- plot and log your own characteristics
- freely selectable form of presentation of the measured values
 - measured values
 - selection
 - resolution
 - colour
 - time intervals

Process schematic

Time curve

Video camera, microphone

USB connection

WWW

www
Digitisation on industrial level

GUNT teaching and training units – with latest real world automation and communication systems

Our devices reproduce industrial reality in doing so, the reduced scale is the crucial factor. The larger the scale of a device, the more realistic the results of the experiment. The smaller the scale, the more flexible the handling of the devices. GUNT supplies devices for both cases. Please find two examples on this page: one table-top unit, small, didactically orientated. The second one a shop-floor unit, totally focused on Industry 4.0 elements, professional orientated.

CE 704 Sequencing Batch Reactor (SBR) Process

The unit is equipped with a modern, digital process controller, with multiple HMI layers and touch panel use. That introduces you to the real world in process automation, getting a closer idea about what digitization means. The process controller performs the following functions:

- Representation of the process variables as a time curve
- Displaying process variables
- Operation of the aeration
- Display and calibration of the pH sensor

The digital process controller operates via touchscreen and displays continuously the measured values and the speed of the stirring machine.

WaXTOT Wellhead & Xmas-Tree Operation Trainer

This training plant serves for operation and maintenance training for professional staff in an oil/gas industrial working environment. All details of the plant are on latest industrial level, fully authentic to modern field systems. Such a plant control system is a master piece of connecting the world of process automation in any modern aspect, talking on Ind. 4.0 and Digitisation: Leading the digital transformation.

The entire trainer is controlled by a PLC/HMI control system.

The DeltaV Architecture

Improve plant performance with PlantWeb

The proven PlantWeb digital plant architecture helps you detect operations, processes, and equipment problems before they even occur, so you can move from reactive to proactive and profitable plant operations.

The DeltaV system used is Emerson Delta V, very common in process and energy industry. Such a plant control system is a master piece of connecting the world of process automation in any modern aspect, talking on Ind. 4.0 and Digitisation: Leading the digital transformation.
Modern digitisation techniques help to enhance your teaching process

Virtual engineering and CAD/CAM

The work of an engineer increasingly involves the use of powerful software modelling tools (virtual modelling). These tools allow us to predict potential manufacturing difficulties, suggest how a product or component is likely to behave in service, and undertake rapid and low cost design iteration and optimisation, to reduce costs, pre-empt failure and enhance performance.

The GUNT Media Center

A platform providing digital information on products in different formats and files
- access via internet
- password protected

Design files
- 2D and 3D CAD files in addition to the hardware in different formats
- solid modelling
- 3D printing

Digital information on the pneumatically driven control valve MT 101

3D CAD files directly via internet browser

Videos of assembly and disassembly

Parts lists

2D drawings

exploded drawings
The complete GUNT programme – equipment for engineering education

Engineering mechanics and engineering design
-Statics
-Engineering drawing
-Engineering design
-Machine dynamics
-Materials testing
-Dynamics
-Dimensional metrology
-Fasteners and machine parts
-Manufacturing engineering
-Assembly projects
-Maintenance
-Machinery diagnosis
-Automation and process control engineering

Mechatronics
-Engineering drawing
-Cutaway models
-Dimensional metrology
-Fasteners and machine parts
-Manufacturing engineering
-Assembly projects
-Maintenance
-Machinery diagnosis
-Automation and process control engineering

Thermal engineering
-Fundamentals of thermodynamics
-Thermodynamic applications in HVAC
-Renewable energies
-Thermal fluid energy machines
-Refrigeration and air conditioning technology

Fluid mechanics
-Steady flow
-Transient flow
-Flow around bodies
-Fluid machinery
-Components in piping systems and plant design
-Hydraulic engineering

Process engineering
-Mechanical process engineering
-Thermal process engineering
-Chemical process engineering
-Biological process engineering
-Water treatment

Energy & environment
-Solar energy
-Hydropower and ocean energy
-Wind power
-Biomass
-Geothermal energy
-Energy systems
-Energy efficiency in building service engineering

Environment
-Water
-Air
-Soil
-Waste

Planning and consulting · Technical service Commissioning and training
Allocation chart: unit – chapter

Allocation of exemplary units to the corresponding chapter of this catalogue

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Level 3 based on information of BTEC Level 3 Nationals in Engineering</th>
<th>Level 4 based on information of BTEC Level 4 Higher National Certificate in Engineering</th>
<th>Level 5 based on information of BTEC Level 5 Higher National Diploma in Engineering</th>
</tr>
</thead>
</table>
| 1 Mechanical Principles | Unit 5: Mechanical Principles and Applications
Unit 11: Further Mechanical Principles and Applications
Unit 12: Applications of Mechanical Systems in Engineering
Unit 18: Advanced Mechanical Principles and Applications | Unit 8: Mechanical Principles | Unit 30: Advanced Mechanical Principles
Unit 62: Strength of Materials |
Unit 37: Structure and Properties of Metals | Unit 7: Machining and Processing of Engineering Materials
Unit 9: Materials, Properties and Testing
Unit 10: Mechanical Workshop Practices | |
| 3 Engineering design | Unit 3: Engineering Design
Unit 16: Engineering Drawing for Technicians | Unit 1: Engineering Design | |
| 4 Maintenance engineering | Unit 17: Computer Aided Drafting in Engineering
Unit 18: Mechanical Measurement and Inspection Techniques
Unit 44: Engineering Maintenance Procedures
Unit 49: Installing and Commissioning Engineering Equipment | Unit 18: Maintenance Engineering
Unit 52: CAD for Maintenance Engineers | Unit 38: Further Thermodynamics
Unit 64: Thermofluids |
| 5 Thermodynamics, heat engines and thermofluids | Unit 14: Principles and Applications of Thermodynamics | Unit 13: Fundamentals of Thermodynamics and Heat Engines
Unit 30: Operations and Plant Management | Unit 38: Further Thermodynamics
Unit 64: Thermofluids |
| 6 Heating, ventilation and air conditioning (HVAC) | Unit 35: Ventilation and Air Conditioning Design in Building Services Engineering
Unit (B188): Heating and Ventilating | Unit 9: Principles of Heating System Design & Installation
Unit 10: Principles of Ventilation & Air conditioning Design & Installation | Unit 62: Heating, Ventilation and Air Conditioning (HVAC) |
| 7 Fluid mechanics | Unit 13: Principles and Applications of Fluid Mechanics | Unit 11: Fluid Mechanics
Unit 30: Operations and Plant Management | Unit 64: Thermofluids |
| 8 Industrial services and systems | Unit 24: Industrial Process Measurement
Unit 47: Industrial Plant and Process Control
Unit 49: Installing and Commissioning Engineering Equipment | Unit 30: Operations and Plant Management | Unit 45: Industrial Systems
Unit 53: Utilisation of Electrical Power
Unit 63: Industrial Services |
| 9 Renewable energy | Unit 51: Electrical Technology | Unit 5: Renewable Energy | Unit 44: Industrial Power; Electronics and Storage
Unit 51: Sustainability
Unit 53: Utilisation of Electrical Power |
| 10 Mechatronics, electrical and electronic principles, fault finding | Unit 6: Electrical and Electronic Principles
Unit 45: Monitoring and Fault Diagnosis of Engineering Systems
Unit 60: Electronic Fault-finding | Unit 6: Mechatronics
Unit 19: Electrical and Electronic Principles
Unit 31: Electrical Systems and Fault Finding | Unit 52: Further Electrical, Electronic and Digital Principles |
| 11 Electro, pneumatic and hydraulic systems | Unit 15: Electro, Pneumatic and Hydraulic Systems and Devices | Unit 29: Electro, Pneumatic and Hydraulic Systems | |
| 12 Instrumentation, control systems, automation, and distributed control systems | Unit 24: Industrial Process Measurement
Unit 25: Selecting and Using Programmable Controllers
Unit 47: Industrial Plant and Process Control
Unit 50: Industrial Process Controllers |
| 13 Digitisation | Unit 23: Computer Aided Design and Manufacture (CAD/CAM) | Unit 41: Distributed Control Systems
Unit 42: Further Programmable Logic Controllers (PLC)
Unit 45: Industrial Systems
Unit 54: Further Control Systems Engineering | Unit 37: Virtual Engineering
Unit 50: Advanced Manufacturing Technology |
Product overview

AT
AT 200 Determination of gear efficiency 16

CT
C 840 Biotechnical production of ethanol 160
C 842 Borage plant 161
C 650 Biodiesel plant 161
C 704 SBR process 200

ET
ET 100.20 Four-stroke petrol engine for CT 110 96
ET 100.21 Two-stroke petrol engine for CT 110 96
ET 100.22 Two-stroke diesel engine for CT 110 96
ET 100.23 Water-cooled four-stroke diesel engine for CT 110 96
ET 110 Test stand for single-cylinder engines, 7,5kW 56
ET 150 Four-stroke petrol engine for CT 155 94
ET 151 Four-stroke diesel engine for CT 155 94
ET 152 Four-stroke petrol engine with variable compression for CT 155 94
ET 153 Two-stroke petrol engine for CT 155 94
ET 158 Modular test stand for single-cylinder engines, 2,2 kW 94

ET 102 Heat pump 93
ET 144 Electrical installation in refrigeration systems 172
ET 150.01 Refrigerant filling and evacuation equipment 87
ET 170 Electrical faults in single air conditioning systems 173
ET 171 Electrical connection of refrigerant compressors 172
ET 172 Electrical faults in refrigerant compressors 173
ET 174 Electrical faults in full air conditioning systems 173
ET 180 Pressure switches in refrigeration 87
ET 192 Replacement of refrigeration components 87
ET 202 Principles of solar thermal energy 157
ET 210 Fundamentals of wind power plants 150
ET 220 Energy conversion in a wind power plant 152
ET 220.01 Wind power plant 150
ET 250 Solar module measurements 98, 154
ET 250.01 Photovoltaics in grid-connected operation 154
ET 250.02 Stand alone operation of photovoltaic modules 154
ET 252 Solar cell measurements 155
ET 255 Using photovoltaics grid-connected or stand-alone 154
ET 256 Conditioning of solar electricity 155
ET 262 Geothermal probe with heat pipe principle 163
ET 264 Geothermal energy with two-well system 162
ET 269 Fuel cell system 164
ET 290 Changes of state in the refrigeration circuit 88
ET 400 Refrigeration circuit with variable load 88
ET 405 Heat pump for cooling and heating operation 148
ET 420 Ice storers in refrigeration 165
ET 432 Behaviour of a piston compressor 97
ET 460 Oil return in refrigeration systems 87
ET 499.01 Cutaway model hermetic refrigerant compressor 87
ET 499.03 Cutaway model open refrigerant compressor, 2-cylinder 87
ET 499.18 Cutaway model, thermostatic expansion valve 87
ET 513 Single-stage piston compressor with drive unit HM 365 107
ET 605 Air conditioning system model 107
ET 605.01 Software controller with data acquisition 107
ET 605.02 Air-conditioning controller 107
ET 605.03 H/I connection box 107
ET 792 Gas turbine 100
ET 796 Gas turbine jet engine 101
ET 805 Steam power plant 200kW with process control system 99, 144
ET 810 Steam power plant with steam engine 98
ET 813 Two-cylinder steam engine 98
ET 813.01 Electrical steam generator 98
ET 830 Steam power plant, 15kW 98
ET 833 Steam power plant 15kW with process control system 99
ET 850 Steam generator 98
ET 851 Axial steam turbine 98
ET 910 Refrigeration training system, base unit 168
ET 910.05 Refrigeration laboratory workplace 168
ET 910.10 Refrigeration components for basic experiments 168
ET 910.11 Refrigeration components for advanced experiments 168
ET 910.12 Set of accessories 168
ET 910.13 Maintenance set 168
ET 915.01 Refrigerator model 90
ET 915.02 Model of a refrigeration system with refrigeration and freezing stage 90
ET 915.06 Model of a simple air conditioning system 90, 106
ET 915.07 Air conditioning model 90, 106
ET 930 Enlarger control with electronic expansion valve 172
FL
FL 100 Strain gauge training system 14
FL 101 Strain gauge application set 14
FL 120 Stress and strain analysis on a membrane 14
FL 130 Stress and strain analysis on a thinned-walled cylinder 14
FL 140 Stress and strain analysis on a thick-walled cylinder 14
FL 200 Photelastic experiments with a transmissometer polariscope 14

HL
HL 313 Domestic water heating with flat collector 156
HL 313.01 Artificial light source 88, 154
HL 314 Domestic water heating with tube collector 156
HL 320.01 Heat pump 159
HL 320.02 Conventional heating 159
HL 320.03 Flat collector 159
HL 320.04 Evacuated tube collector 159
HL 320.05 Central storage module with controller 159
HL 320.07 Underfloor heating/geothermal energy absorber 159
HL 320.08 Fan heater/air heat exchanger 159
HL 352 Test stand for oil, natural gas and propane gas burners 156
HL 352.01 Oil burner 156
HL 352.02 Natural gas burner 156
HL 352.03 Propane gas burner 156
HL 710 Air duct systems 156
HL 720 Ventilation system 156
HL 860 Assembly station pipes and valves and fittings 40, 47, 67

HM
HM 115 Hydraulics trainer 112
HM 135 Determination of the settling velocity 113
HM 143 Transient drainage processes in storage reservoirs 165
HM 150 Base module for experiments in fluid mechanics 116
HM 150.01 Pipe friction for laminar/turbulent flow 116
HM 150.03 Plate heat exchangers for HM 150 119
HM 150.04 Centrifugal pump 117
HM 150.05 Hydraulics pressure in liquids 113
HM 150.06 Stability of flowing bodies 116
HM 150.07 Bernoulli’s principle 117, 176
HM 150.08 Measurement of jet forces 119
HM 150.09 Horizontal flow from a tank 119
HM 150.10 Visualisation of streamlines 118
HM 150.11 Losses in a pipe system 117
HM 150.12 Vertical flow from a tank 119
HM 150.13 Flow profile measurement 117
HM 150.14 Venturi formation 119
HM 150.15 Hydraulic ram – pumping with universal hammer 118
HM 150.16 Osborne Reynolds experiment 118
HM 150.19 Operating principle of a Pelton turbine 117
HM 150.20 Operating principle of a Francis turbine 117
HM 150.21 Visualisation of streamlines in an open channel 117
HM 150.29 Energy losses in piping elements 117
HM 150.39 Floating bodies for HM 150.06 118
HM 160 Experimental flame 800-300 mm 120
HM 170 Open wind tunnel 124
HM 220 Air flow experimental plant 177
HM 225.02 Boundary layers 123
HM 225.03 Bernoulli’s principle 122
HM 225.04 Drag forces 123
HM 225.05 Flow in a pipe elbow 122
HM 225.06 Guard effect 123
HM 225.07 Free jet 122
HM 225.08 Visualisation of streamlines 123
HM 240 Principles of air flow 178
HM 241 Fundamentals of fluid flow 114
HM 250 Experiments with airfan fan 104, 159
HM 255 Experiments with an axial fan 124, 130
HM 265 Experiments with a centrifugal pump 131
HM 284 Series and parallel configuration of pumps 131
HM 285 Experiments with a piston pump 131
HM 286 Experiments with a gear pump 131
HM 287 Experiments with an axial fan 131, 153
HM 289 Experiments with a reaction turbine 131, 153
HM 295 Experiments with a Pelton turbine 131
HM 296 Base unit for turbines 131, 153
HM 297 Experiments with an action turbine 131, 153
HM 282 Experiments with a radial pump 130
HM 362 Comparison of pumps 128
HM 450C Characteristic variables of hydraulic turbomachines 152
IA
IA 100 Calibrating a pressure sensor 183
IA 110 Principles of industrial sensors 182
IA 120 Principles of industrial sensors 182
Product overview

<table>
<thead>
<tr>
<th>PFT</th>
<th>Product overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT 110</td>
<td>Kinematic model: crank mechanism</td>
</tr>
<tr>
<td>MT 120</td>
<td>Kinematic model: crank slider</td>
</tr>
<tr>
<td>MT 130</td>
<td>Kinematic model: four-plant link</td>
</tr>
<tr>
<td>MT 140</td>
<td>Kinematic model: Whitworth quick return mechanism</td>
</tr>
<tr>
<td>MT 150</td>
<td>Kinematic model: Hooke’s coupling</td>
</tr>
<tr>
<td>MT 160</td>
<td>Kinematic model: Ackermann steering mechanism</td>
</tr>
</tbody>
</table>

| MMTS | Mechatronic Maintenance Training System |
| MTR | Main Process Training Rig |

MT	Training system: fundamentals of hydraulics
MT 101	Pneumatically driven control valve
MT 110	Assembly station: spur wheel/worm gear mechanism
MT 110.02	Assembly spur wheel/worm gear mechanism - 44, 46, 57, 64
MT 120	Assembly exercise: spur gear
MT 121	Assembly exercise: mlite gear
MT 122	Assembly exercise: planetary gear
MT 140	Assembly station: piston compressor
MT 140.01	Assembly exercise: piston compressor: functional test
MT 140.02	Assembly exercise: piston compressor: diagnosis
MT 157	Assembly exercise: butterfly valve and non-return valve
MT 158	Assembly exercise: ball valve and shut-off valve
MT 170	Assembly shaft with journal bearings
MT 171	Assembly hydrodynamic journal bearing
MT 180	Assembly & maintenance exercise: centrifugal pump
MT 181	Assembly & maintenance exercise: multistage centrifugal pump
MT 182	Assembly & maintenance exercise: screw pump
MT 183	Assembly & maintenance exercise: diaphragm pump
MT 184	Assembly & maintenance exercise: piston pump
MT 185	Assembly & maintenance exercise: in-line centrifugal pump
MT 186	Assembly & maintenance exercise: gear pump
MT 190	Assembly & maintenance exercise: boiler
MT 210	Assembly & maintenance exercise: refrigeration

PFT	Process pump trainer
PFT 1	Process pump trainer
PFT 138	Process pump trainer

PT	PT 503.13	Couplings kit
PT 501	Roller-bearing faults	
PT 502	Ball bearing faults	

PT	PT 010	Training system: level control, HSI
PT 020	Training system: flow control, HSI	
PT 030	Training system: pressure control, HSI	
PT 040	Training system: temperature control, HSI	
PT 050	Training system: speed control, HSI	
PT 060	Training system: position control, HSI	
PT 365	Operation of industrial controllers	
PT 380	Optimization of control loops	
PT 399	Pump and valves test stand	
PT 400	Process automation training system: base module	
PT 578	Control of four variables from process engineering	
PT 700	Training system: fundamentals of hydraulics	
PT 701	Components set electrohydraulics	
PT 710	Hydraulic servo system	
PT 770	Training system: pneumatics, electro-pneumatics and PLC	

SE	SE 110	GUNT-Structure Line
SE 110.14	Elastic line of a beam	
SE 110.16	Parabolic arch	
SE 110.19	Investigation of simple stability problems	
SE 110.21	Forces in various airplane structures	
SE 110.47	Methods to determine the elastic line	
SE 110.57	Building of bars	
SE 225	Friction on the inclined plane	

TM	TM 110	Fundamentals of statics
TM 110.01	Supplementary set – inclined plane and friction	
TM 110.02	Supplementary set – pulley blocks	
TM 110.03	Supplementary set – gear wheels	
TM 123	Spur-gear set, 16, 44	
TM 124	Worm gear unit	
TM 125	Cable winch	
TM 150	Vibration trainer	
TM 150.02	Free and damped torsional vibrations	
TM 150.20	System for data acquisition	
TM 182	Elliptic-triangular suspension of pendulums	
TM 183	Torsional vibrations	
TM 184	Coil spring vibrations	
TM 185.0	Belt drive and belt friction	
TM 605	Centrifugal force	
TM 632	Gyroscopic force	
TM 630	Centrifugal governor	
TM 710	Training system: three-dimensional display	
TM 720.06	Drilling rig for an annular disc	
TM 720.07	Lever beams	
TM 720.71	Assembly of lever beams	

T2	T2 100	Engineering drawing/three-dimensional display
T2 120	Cylindrical work samples with standard cut-outs	
T2 200.01	Bending device	
T2 200.06	Drilling rig for an annular disc	
T2 200.07	Lever beams	
T2 200.71	Assembly of lever beams	

WS	WS	Wellhead & Misc-fac Operation Trainer
WS 102	Change of state of gases	
WS 103	Expansion of ideal gases	
WS 110	Heat exchanger supply unit	
WS 110.01	Tubular heat exchanger	
WS 110.02	Plate heat exchanger	
WS 110.03	Shell & tube heat exchanger	
WS 110.04	Stacked tank with double jacket and coil	
WS 110.20	Water chiller	
WS 200	Fundamentals of temperature measurement	
WS 203	Fundamentals of pressure measurement	
WS 210	Evaporation process	
WS 220	Boiling process	
WS 230	Condensation process	
WS 312.10	Hot water generator	
WS 312.11	Water chiller	
WS 3510	Comparison of various heat exchangers	
WS 420	Heat conduction in metals	
WS 422	Heat conduction in fluids	
WS 430	Heat conduction and convection	
WS 440	Free and forced convection	
WS 460	Heat transfer by radiation	

WE	WE	Pneumatic Digital Servo Bending Machine
WE 121	Demonstration of Euler buckling	
WE 130	Verification of stress hypotheses	
WE 140	Fatigue strength test	
WE 300	Materials testing, ZHNM	
WE 300.08	Experimental setup for spring test, helical spring, 2 sets	
WE 300.20	System for data acquisition	
WE 400	Impact test, 250J	
WE 500	Torsion test, 30 kN	
WE 600	Creep rupture test	
WE 950	Deformation of straight beams	
Equipment for engineering education