

Date d'édition: 18.12.2025

Ref: EWTGUHM150.15

HM 150.15 Bélier hydraulique - Refoulement réalisé à l'aide de coups de bélier (Réf. 070.15015)

Cause et effet des coups de bélier

Linterruption brusque découlement deau peut causer des coups de bélier dans les tuyaux.

Ce phénomène généralement indésirable, est utilisé dans les appareils spéciaux (béliers hydrauliques) pour rehausser le niveau de leau.

Lede présenter le principe des coups de bélier et dexaminer le fonctionnement dun bélier hydraulique. Leau est dirigée dans le bélier hydraulique grâce à un long tuyau incliné.

Dès que leau atteint une vitesse donnée, la vanne dimpulsion du bélier hydraulique se referme automatiquement sous leffet des forces découlement.

Ceci a lieu brusquement de manière à transformer lénergie cinétique de leau contenue dans le tuyau en énergie de pression potentielle.

La pression ouvre un clapet de retenue.

Leau est dirigée dans un réservoir dair.

Le coussin dair placé dans le réservoir dair freine le coup de bélier et permet dobtenir un écoulement homogène dans le réservoir élevé.

Lorsque le coup de bélier a disparu, la vanne dimpulsion souvre sous leffet du poids propre, leau contenue dans le tuyau recommence à circuler et le processus se répète.

Lessai est consacré au rapport entre la vanne dimpulsion, le poids, la levée de la soupape et le débit.

Il montre également linfluence du volume de lair contenu dans le réservoir dair sur le refoulement.

Le débit est ajusté par des soupapes.

Lalimentation en eau et la mesure du débit sont prises en compte par le module de base des essais réalisés en mécanique des fluides

Alternativement, lappareil dessai peut aussi être opéré par le réseau du laboratoire.

LeCenter met à disposition du matériel didactique multimédia numérique, y compris un cours dapprentissage en ligne sur la connaissance de base et des calculs.

Des vidéos présentent un essai complet avec la préparation, lexécution et lévaluation.

Des feuilles de travail accompagnées des solutions complètent le matériel didactique.

Contenu didactique / Essais

- présentation du phénomène de cause à effet des coups de bélier
- principe du bélier hydraulique
- fonction dun réservoir dair
- conséquences du volume dair contenu dans le réservoir dair et de la vitesse découlement pour le refoulement
- détermination de lefficacité

GUNTCenter, développement des compétences numériques

- cours dapprentissage en ligne avec connaissances de base et calculs
- vidéos avec présentation détaillée des essais: préparation, exécution, évaluation
- succès dapprentissage assuré grâce aux feuilles de travail numériques
- acquisition dinformations sur des réseaux numériques

Date d'édition: 18.12.2025

Les grandes lignes

- principe du bélier hydraulique
- réservoirs transparents et clapet de retenue visible afin de bien observer le fonctionnement
- matériel didactique multimédia numérique en ligne dans leCenter: cours dapprentissage en ligne, feuilles de travail, vidéos

Les caractéristiques techniques

Bélier hydraulique

- hauteur de refoulement max.: 0,27m
- débit: 90L/h

Dimensions et poids

Lxlxh: 1100x640x1400mm

Poids: env. 57kg

Nécessaire au fonctionnement

HM 150 (circuit d'eau fermé) ou raccord d'eau, drain

Liste de livraison

- 1 appareil d'essai
- 1 jeu de flexibles
- 1 jeu de poids
- 1 documentation didactique
- 1 accès en ligne auCenter

Accessoires disponibles et options

HM150 - Module de base pour essais de mécanique des fluides

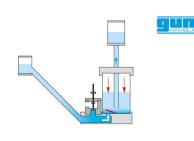
Produits alternatifs

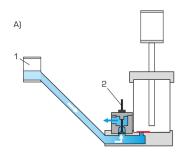
HM155 - Coups de bélier dans les tuyauteries

HM156 - Coups de bélier et cheminée d'équilibre

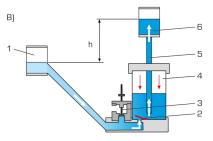
Catégories / Arborescence

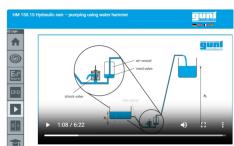
Techniques > Mécanique des fluides > Exemples d'écoulement non stationnaire


Systèmes Didactiques s.a.r.l.


Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 18.12.2025





Systèmes Didactiques s.a.r.l.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 18.12.2025

Options

Date d'édition: 18.12.2025

Ref: EWTGUHM150

HM 150 Module de base pour essais de mécanique des fluides (Réf. 070.15000)

Support et alimentation en eau (circuit fermé) pour module HM150.XX, mesure de débit volumétriques

La série d'appareils HM 150 délivre un grand aperçu des essais expérimentaux élémentaires pouvant être réalisés en mécanique des fluides.

Pour les besoins individuels, le module de base HM 150 fournit l'essentiel: l'alimentation en eau dans un circuit fermé; la détermination du débit volumétrique, ainsi que le positionnement de l'appareil sur le plan de travail du module de base et la collecte de l'eau d'égouttement.

Le circuit d'eau fermé est constitué d'un réservoir de stockage sous-jacent équipé d'une pompe submersible puissante et d'un réservoir de mesure placé au-dessus et destiné à collecter l'eau en sortie.

Le réservoir de mesure a plusieurs niveaux, adaptés aux petits et grands débits volumétriques.

Pour les très petits débits volumétriques, on utilise un bécher de mesure.

Les débits volumétriques sont déterminés à l'aide d'un chronographe.

Le plan de travail placé en haut permet de bien positionner les différents appareils.

Un canal d'essais est intégré au plan de travail. Il est prévu pour les essais réalisés avec des déversoirs (HM 150.03).

Les grandes lignes

- Alimentation en eau des appareils d'essai utilisés en mécanique des fluides
- Mesure du débit volumétrique pour de grands et petits débits
- Les nombreux accessoires permettent de réaliser un cours de formation élémentaire complet en mécanique des fluides

Les caracteristiques techniques

Pompe

- puissance absorbée: 250W

débit de refoulement max.: 150L/minhauteur de refoulement max.: 7,6m

Réservoir de stockage, contenu: 180L

Réservoir de mesure

pour grands débits volumétriques: 40Lpour petits débits volumétriques: 10L

Canal

- Lxlxh: 530x150x180mm

Bécher de mesure gradué pour les très petits débits volumétriques

- contenu: 2L

Chronographe

- plage de mesure: 0...9h 59min 59sec

Dimensions et poids Lxlxh: 1230x770x1070mm

Poids: env. 85kg

Necessaire au fonctionnement

Date d'édition: 18.12.2025

230V, 50/60Hz

Liste de livraison

1 module de base

1 chronomètre

1 gobelet gradué

1 jeu daccessoires

1 notice

Accessoires disponibles et options:

Principes de base de la hydrostatique

HM 150.02 Étalonnage des appareils de mesure de pression

HM 150.05 Pression hydrostatique dans des liquides

HM 150.06 Stabilité des corps flottants

HM 150.39 Corps flottants pour HM 150.06

Principes de base de la hydrodynamique

HM 150.07 Théorème de Bernoulli

HM 150.08 Mesure des forces de jet

HM 150.09 Vidange horizontale d'un réservoir

HM 150.12 Vidange verticale d'un réservoir

HM 150.14 Formation de tourbillons

HM 150.18 Essai dOsborne Revnolds

Écoulement dans les conduites

HM 150.01 Pertes de charge linéaires en écoulement laminaire / turbulent

HM 150.11 Pertes de charge dans un système de conduites

HM 150.29 Perte d'énergie dans des éléments de tuyauterie

HM 150.13 Principes de base de la mesure de débit

Écoulement dans des canaux à surface libre

HM 150.03 Déversoirs à paroi mince pour HM 150

HM 150.21 Visualisation de lignes de courant dans un canal ouvert

Écoulement autour de corps

HM 150.10 Visualisation de lignes de courant

Machines à fluide

HM 150.04 Pompe centrifuge

HM 150.16 Montage en série et en parallèle de pompes

HM 150.19 Principe de fonctionnement d'une turbine Pelton

HM 150.20 Principe de fonctionnement d'une turbine Francis

Écoulement non stationnaire

HM 150.15 Bélier hydraulique - refoulement réalisé à laide de coups de bélier

Produits alternatifs

Date d'édition: 18.12.2025

Ref: EWTGUHM155

HM 155 Coups de bélier dans les tuyauteries (Réf. 070.15500)

Avec interface PC USB et logiciel inclus

Les coups de bélier dans les tuyauteries posent de sérieux problèmes à tout système technique, car ils peuvent causer des dommages importants sur les tuyauteries, les robinetteries et les composants d'une installation. Les coups de bélier sont générés par la force d'inertie du fluide en mouvement, suite à des variations brusques de la vitesse, par ex. à la fermeture rapide d'une soupape.

C'est pourquoi, les coups de bélier et leur origine sont un aspect important de la conception des tuyauteries. Le banc d'essai HM 155 permet d'examiner les coups de bélier et les ondes de pression apparaissant dans les tuyaux longs.

Les coups de bélier sont générés par la fermeture d'une soupape, à la fin de la section de tuyau.

Ces coups de bélier sont alors réfléchis au début du tuyau, sous forme d'ondes inversées.

Un réservoir sous pression avec coussin d'air placé au début de la section de tuyau, simule le début du tuyau ouvert de manière à avoir une réflexion exacte de l'onde.

Pour obtenir des temps de réflexion suffisamment élevés, on a installé une section de tuyau de 60m de long, en forme de serpentin pour limiter l'encombrement.

Les essais sont consacrés au rapport entre les coups de bélier et les temps de fermeture des soupapes.

C'est pourquoi, le banc d'essai est équipé de deux électrovannes, dont l'une a un temps de fermeture constant et l'autre, un temps de fermeture ajustable.

Les oscillations de la pression qui apparaissent, sont enregistrées par un capteur de pression.

L'évolution de pression est alors représentée à l'aide du logiciel GUNT.

Le débit est ajusté par une soupape. La pression du système et le débit sont affichés.

Une soupape de sûreté protège le système des hautes pressions.

Contenu didactique / Essais

- rapport entre les coups de bélier et le débit
- rapport entre les coups de bélier et le temps de fermeture de la soupape
- représentation de l'évolution de pression
- détermination du temps de réflexion
- calcul de la vitesse du son dans l'eau

Les grandes lignes

- étude des coups de bélier et des ondes de pression dans les tuyaux
- longueur de section de tuyau, 60m
- mesure de la vitesse du son dans l'eau
- électrovanne avec temps de fermeture ajustable
- logiciel GUNT de représentation de l'évolution de pression

Les caracteristiques techniques

Électrovanne, temps de fermeture constant

- temps de fermeture: 20...30ms - pression de service: 0...10bar

Électrovanne, temps de fermeture ajustable

- temps de fermeture: 1...4s

- pression de service: 0,2...12bar

Soupape de sûreté: 16bar

Date d'édition : 18.12.2025

Section de tuyau, cuivre

- longueur: 60m

- diamètre intérieur: 10mm

Réservoir sous pression: 5L

Plages de mesure - pression: 0...16bar - débit: 30...320L/h

230V, 50Hz, 1 phase

Dimensions et poids Lxlxh: 1310x790x1500mm

Poids: env. 155kg

Necessaire au fonctionnement raccord deau 300L/h, drain PC avec Windows

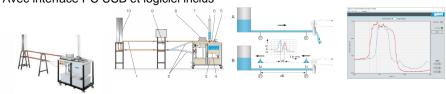
Liste de livraison

1 banc dessai

1 CD avec logiciel GUNT + câble USB

1 jeu de flexibles

1 documentation didactique


Produits alternatifs

HM150.15 - Bélier hydraulique - Refoulement réalisé à l'aide de coups de bélier HM156 - Coups de bélier et cheminée d'équilibre

Ref: EWTGUHM156

HM 156 Coups de bélier et cheminée d'équilibre (Réf. 070.15600)

Avec interface PC USB et logiciel inclus

Dans les installations industrielles de type centrales hydro-électriques ou dans les systèmes dalimentation en eau, les variations du débit entraînent des variations de la pression.

On remarque ce phénomène par exemple à la mise en marche et à larrêt des machines hydrauliques, ou à louverture et à la fermeture des éléments de barrage.

On fait la différence entre les variations rapides de la pression qui se propagent à haute vitesse (coups de bélier) et les variations lentes de la pression causées par des oscillations de masse.

Pour amortir les coups de bélier et les oscillations de masse, des amortisseurs à air ou des cheminées déquilibre sont mis en place dans les tuyauteries.

HM 156 permet de générer et de visualiser les coups de bélier dans les tuyauteries et dexpliquer le fonctionnement dune cheminée déquilibre.

Le banc dessai est équipé dune section de tuyau munie dun robinet à tournant sphérique et dune cheminée déquilibre, et dune deuxième section de tuyau avec électrovanne.

Le premier essai est consacré à la génération dun coup de bélier en fermant rapidement le robinet à tournant SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 18.12.2025

sphérique.

Lors du freinage brusque de la masse deau, lénergie cinétique est libérée et transformée dans la cheminée déquilibre en énergie potentielle.

Les oscillations dues à pression qui apparaissent, sont enregistrées par un capteur de pression placé derrière la cheminée déquilibre, puis représentées par le logiciel comme évolution de pression.

Le mouvement du niveau de leau se présente sous la forme dun mouvement oscillatoire dans la cheminée déquilibre.

Dans le deuxième essai, la fermeture rapide de lélectrovanne génère un coup de bélier élevé dans la deuxième section de tuyau.

Lénergie cinétique de leau est transformée en énergie de pression.

Le coup de bélier et les variations qui sen suivent, sont enregistrés par deux capteurs de pression placés dans la section de tuyau et représentés dans le logiciel sous forme de évolution de pression.

Lalimentation en eau et la mesure du débit sont réalisées par le module dalimentation.

Contenu didactique / Essais

compréhension des processus découlement non stationnaires dans les tuyauteries par les essais

- présentation des coups de bélier dans les tuyauteries
- détermination de la vitesse du son dans leau
- compréhension du fonctionnement dune cheminée déquilibre
- -fréquence propre de la cheminée déquilibre

Les grandes lignes

visualisation des coups de bélier fonction dune cheminée déquilibre détermination de la vitesse du son dans leau

logiciel GUNT de représentation des coups de bélier et des oscillations

Les caractéristiques techniques

Section de tuyau pour oscillations de la pression

- cuivre
- longueur: 5875mm, Ø intérieur: 26mm
- robinet à tournant sphérique - cheminée déquilibre, PMMA

hauteur: 825mm Ø intérieur: 40mm

Section de tuyau pour coups de bélier

- cuivre
- longueur: 5875mm, Ø intérieur: 26mm - écart entre les capteurs: 3000mm
- électrovanne, temps de fermeture constant: 20?30ms

Réservoir: 50L Module dalimentation

- pompe

puissance absorbée: 250W

débit de refoulement max.: 150L/min hauteur de refoulement max.: 7.6m

- réservoir de stockage: 180L - réservoir de mesure: 60L

Plages de mesure

pression: 2x 0?10bar (section de tuyau) pression: 0?0,3bar (cheminée déquilibre)

Date d'édition : 18.12.2025

230V, 50Hz, 1 phase

Dimensions et poids

Lxlxh: 6800x820x2000mm (total)

Poids: env. 155kg

Nécessaire pour le fonctionnement

PC avec Windows

Liste de livraison

1 banc dessai avec module dalimentation

1 logiciel