

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 02.11.2025

Ref: EWTGUHM161.36

HM 161.36 Déversoir à siphon (Réf. 070.16136)

Analyses la capacité de décharge du déversoir du siphon avec et sans ventilation

Les déversoirs à siphon comptent parmi les déversoirs fixes.

Ils sont utilisés pour l'évacuation de crues sur les barrages et présentent une capacité d'évacuation spécifique élevée.

Les déversoirs à siphon « se mettent en action » dès que le niveau de l'eau du lac artificiel atteint une hauteur déterminée.

On assiste alors à un écoulement en charge dans le conduit entièrement traversé.

Cet écoulement en charge a une capacité d'évacuation élevée, qui est supérieure à la capacité d'évacuation au niveau de la nappe dénoyée.

Lorsque le niveau de l'eau baisse à nouveau, de l'air est aspiré dans le siphon.

Ce qui interrompt brusquement la colonne d'eau.

Le déversoir à siphon transparent HM 161.36 dispose d'une aération permettant de comparer le fonctionnement ou la capacité d'évacuation du déversoir à siphon avec et sans aération.

L'aération permet également d'interrompre à tout moment le débit dans le siphon actif.

Contenu didactique / Essais

- principe de fonctionnement d'un déversoir à siphon
- débit d'un déversoir à siphon
- comparaison entre écoulement tubulaire et chute libre dans un déversoir à siphon

Les grandes lignes

- Déversoir à siphon avec aération en option

Caractéristiques techniques

Déversoir à siphon

- matériau: PMMA
- section d'écoulement avec plage de débit, BxH: 570x100mm

Dimensions et poids

Lxlxh: 1000x600x780mm

Poids: env. 40kg

Liste de livraison

1 déversoir à siphon

1 jeu d'accessoires

1 notice

Accessoires

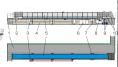
Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 02.11.2025

requis

HM 161 Canal d'essai 600x800mm

Options


Ref: EWTGUHM161

HM 161 Canal d'essai hydraulique 600x800mm, circuit eau fermé, inclinaison réglable (Réf.

070.1610)

Longueur totale: 21m, longueur utile 16 m

Le canal d'essai HM 161 est le plus grand dans cette catégorie de produits GUNT.

Les vitesses d'écoulement pouvant être atteintes dans le canal d'essai ainsi que la longueur importante de la section d'essai sont des conditions optimales pour la conception de projets individuels.

Ces projets peuvent en effet se rapprocher au plus près de la réalité.

La section d'essai a une longueur de 16m et une coupe transversale de 600x800mm.

Les parois latérales de la section d'essai sont en verre trempé permettant l'observation optimale des essais.

Tous les composants en contact avec leau sont fabriqués dans des matériaux résistants à la corrosion (acier inoxydable, plastique renforcé de fibres de verre).

L'élément d'entrée est conçu de telle manière à minimiser les turbulences de l'écoulement à son arrivée dans la section d'essai.

Le circuit d'eau fermé est constitué dune série de réservoirs d'eau et de deux pompes de forte puissance.

Les réservoirs sont intégrés à l'installation de telle manière qu'ils peuvent aussi servir de galerie dans laquelle il est possible de se tenir.

L'utilisateur peut ainsi accéder facilement à n'importe quel endroit de la section d'essai.

Afin de permettre la simulation de chutes et l'ajustage dun écoulement uniforme ayant une profondeur constante, le canal d'essai est équipé dun système dajustage de l'inclinaison motorisé.

De nombreux modèles sont disponibles en tant qu'accessoires, tels que des déversoirs, piles, canaux de mesure ou un générateur de vagues.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 02.11.2025

Ce qui permet de réaliser un ensemble d'essais très complet.

La plupart des modèles se vissent rapidement et de manière sécurisée au fond de la section d'essai.

Le canal d'essai dispose de fonctions très complètes de mesure, de réglage et de commande qui sont pilotées par un API.

Deux écrans tactiles librement positionnable affichent les valeurs de mesure et les états de fonctionnement et permettent de commander l'installation.

Les valeurs de mesure sont transmises simultanément à un écran de 32 pour l'affichage à distance.

Via l'API, les valeurs de mesure peuvent être enregistrées en interne.

L'accès aux valeurs de mesure enregistrées est possible à partir des terminaux via WLAN avec routeur intégré/connexion LAN au réseau propre au client.

Via connexion LAN directe, les valeurs de mesure peuvent également être transmises à un PC afin dy être exploitées à l'aide du logiciel GUNT.

Contenu didactique / Essais

- écoulement uniforme et écoulement non uniforme
- formules de débits
- changement d'écoulement (ressaut)
- avec les modèles disponibles comme accessoires, on étudie les phénomènes suivants

écoulement au-dessus des ouvrages de contrôle: déversoirs (à paroi mince, à crête déversante, à crête arrondie)

écoulement sous des ouvrages de contrôle: vannes (vanne plane, vanne radiale)

dissipation dénergie (ressaut, bassin damortissement)

modifications de la coupe transversale

canal jaugeur

écoulement non stationnaire: vagues

pilots vibrants

transport des sédiments

Les grandes lignes

- Section d'essai avec parois latérales transparentes, longueur de 16m
- Écoulement homogène grâce à un élément d'entrée très bien conçu
- Modèles de tous les domaines du génie hydraulique disponibles comme accessoires

Caractéristiques techniques Section d'essai, longueur: 16m

- section d'écoulement lxh: 600x800mm

- 3 vérins de levage à vis

- système d'ajustage de linclinaison: -0,75?+2,1%

Réservoirs: 1x 3600L, 4x 4300L

2 pompes

débit de refoulement, section dessai max.: 400m3/h
débit de refoulement max.: 228m3/h, par pompe
hauteur de refoulement max.: 35m, par pompe

Plages de mesure

- débit: 0?400m3/h

- inclinaison: -0