

Date d'édition: 02.11.2025

Ref: EWTGUSE110.16

SE 110.16 Arc parabolique (Réf. 022.11016)

Différences entre un arc isostatique et l'arc hyperstatique, Nécessite bâti SE 112

Les arcs paraboliques sont des éléments recherchés dans la technique de construction.

Ils peuvent notamment être utilisés comme ponts ou comme poutres.

Normalement, ces ponts sont hyperstatiques.

La particularité de larc parabolique est que seules les forces normales et seuls les moments de flexion apparaissent dans larc, mais pas les efforts tranchants.

Cest le cas lorsque larc est soumis à une charge linéaire uniforme et que les deux extrémités sont fixées dans des paliers fixes.

De cette manière, il est possible de construire des arcs en pierres posées de manière libre.

Il sagit dune technique de construction qui existe depuis de nombreux siècles.

Les charges agissent à lintérieur de larc principalement en tant que force de compression dans le sens de la force normale à chaque point de larc.

Le SE 110.16 comporte un arc parabolique préformé. Il peut être soumis à des charges ponctuelles ou linéaires.

Il est possible de suspendre un tablier élastique et de le charger.

Un des appuis de larc est un palier fixe, lautre est un palier mobile horizontalement.

Ce déplacement est annulé à laide de poids. Dès lors, le palier libre devient un palier fixe.

Des poids supplémentaires compensent la réaction dappui verticale.

Les comparateurs à cadran saisissent le fléchissement de larc soumis à une charge et le déplacement horizontal du palier libre.

Aussi longtemps que le palier libre reste mobile, larc est isostatique.

Cependant, il est nettement déformé lorsquil est soumis à une charge.

Dès que le palier libre devient immobile, larc nest plus isostatique et ne présente plus quune légère déformation.

Les pièces dessai sont logées de manière claire et protégées dans un système de rangement.

Lensemble du montage expérimental est monté dans le bâti SE 112.

Contenu didactique / Essais

- principes mécaniques de larc parabolique
- différences entre larc isostatique et larc hyperstatique
- mesure des déformations de larc soumis à une charge
- mesure des réactions dappui au niveau de larc hyperstatique soumis à une charge
- calcul des réactions dappui
- influence de la charge sur les efforts dappui et la déformation de larc
- -- charge ponctuelle
- -- charge linéaire
- -- tablier avec des charges

Les grandes lignes

- arcs paraboliques isostatiques ou hyperstatiques soumis à une charge

Date d'édition: 02.11.2025

- déformations de larc soumis à une charge
- réactions dappui de larc

Les caracteristiques techniques Arc parabolique préformé en acier

longueur: 1000mmhauteur: 280mmsection: 20x6mm

Tablier de PVC

poids propre: env. 2,6NLxlxh: 900x70x3mm

Comparateur à cadran

- plage de mesure: 0...25mm

- graduation: 0,01mm

Poids

- 11x 1N (7+4 suspentes)
- 7x 1N (étriers)
- 36x 1N
- 19x 5N

Dimensions et poids

Lxlxh: 1170x480x178mm (système de rangement)

Poids: env. 38kg (total)

Liste de livraison

1 arc avec 7 étriers + 7 suspentes

1 tablier avec des étriers

1 jeu de poids

2 poulies de renvoi avec fixation

1 appui

2 comparateurs à cadran

1 système de rangement avec mousse de protection

1 documentation didactique

Accessoires disponibles et options

SE112 - Bâti de montage

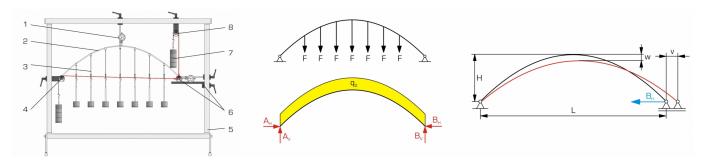
Produits alternatifs

SE110.12 - Lignes dinfluence au niveau de la poutre cantilever

SE110.17 - Arc à trois articulations

SE110.18 - Forces au niveau dun pont suspendu

Catégories / Arborescence


Techniques > Mécanique > Statique > Ponts, poutres, arcs

Systèmes Didactiques s.a.r.l.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 02.11.2025

Date d'édition: 02.11.2025

Options

Ref: EWTGUSE112

SE 112 Bâti de montage pour la gamme SE 110.xx (Réf. 022.11200)

Montages simples, clairs pour des essais de statique, de résistance des matériaux, de dynamique

Le bâti de montage SE 112 permet deffectuer des montages expérimentaux clairs et simples en rapport avec les domaines de la statique, de la résistance des matériaux et de la dynamique.

Le SE 112 se compose de profilés en acier qui sont vissés à un bâti de montage.

Deux pieds latéraux garantissent une position stable.

Le montage du bâti à partir de différents éléments seffectue facilement et rapidement, ce qui requiert peu de manipulations.

Les grandes lignes

- bâti pour les montages expérimentaux relatifs à la statique, la résistance des matériaux et la dynamique

Les caractéristiques techniques

Bâti de montage en profilés en acier

- ouverture du bâti lxh: 1250x900mm
- largeur des rainures du profilé: 40mm

Dimensions et poids

Lxlxh: 1400x400x1130mm (monté) Lxlxh: 1400x400x200mm (non monté)

Poids: env. 32kg

Liste de livraison

- 1 bâti de montage en pièces détachées
- 1 jeu de vis avec clé pour vis à six pans creux
- 1 mode demploi

Accessoires disponibles et options

Date d'édition: 02.11.2025

WP300.09 - Chariot de laboratoire

en option

Conditions déquilibre

SE 110.50 Câble soumis au poids propre

SE 110.53 Équilibre dans un système plan isostatique

Ponts, poutres, arcs

SE 110.12 Lignes dinfluence au niveau de la poutre cantilever

SE 110.16 Arc parabolique

SE 110.17 Arc à trois articulations

SE 110.18 Forces au niveau dun pont suspendu

Forces et déformation dans un treillis

SE 110.21 Forces dans différents treillis plans

SE 110.22 Forces dans un treillis hyperstatique

SE 110.44 Déformation dun treillis

Déformations élastiques et permanentes

SE 110.14 Courbe de flexion élastique dune poutre

SE 110.20 Déformation des bâtis

SE 110.29 Torsion de barres

SE 110.47 Méthodes de détermination de la courbe de flexion élastique

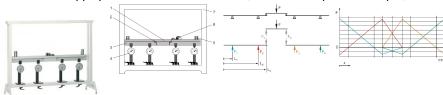
SE 110.48 Essai de flexion, déformation plastique

Stabilité et flambement

SE 110.19 Étude de problèmes de stabilité simples

SE 110.57 Flambement de barres

Vibrations sur une poutre en flexion


SE 110.58 Vibrations libres sur une poutre en flexion

Produits alternatifs

Ref: EWTGUSE110.12

SE 110.12 Lignes d?influence au niveau de la poutre cantilever (Réf. 022.11012)

Calcul forces appliquées méthode des sections, conditions équilibre statique, Nécessite bâti SE 112

De nombreux ponts sont réalisés sous la forme de poutres cantilever.

Les ponts sont soumis à des charges mobiles.

Dès lors, il est important de prendre en compte ces charges mobiles lors de la conception.

Pour cela, on détermine ce que lon appelle des lignes dinfluence.

Les lignes dinfluence décrivent des réactions statiques sur une charge mobile, par ex. des réactions internes de la poutre ou des réactions dappui.

Les lignes dinfluence sont calculées via la méthode des sections et des conditions déquilibre de la statique, tout

Date d'édition: 02.11.2025

comme la courbe des moments de flexion pour une charge statique.

Une poutre cantilever est une poutre articulée. Dans le cas du SE 110.12, elle dispose de deux bras et une poutre de suspension est également utilisée.

Deux appuis soutiennent à chaque fois un bras.

La poutre de suspension est montée de manière articulée sur les deux éléments en porte-à-faux des bras.

De cette manière, lensemble de la poutre est isostatique.

Les appuis des bras sont équipés de dynamomètres à cadran qui affichent les réactions dappui.

Différentes charges et une charge mobile sont mis à disposition pour le chargement de la poutre.

Dès lors, la poutre peut être soumise à des charges ponctuelles ou linéaires ou à une charge mobile.

Les dynamomètres à cadran indiquent directement leffet dune charge mobile sur les réactions dappui.

Les appuis sont coulissants.

Les pièces dessai sont logées de manière claire et protégées dans un système de rangement.

Lensemble du montage expérimental est monté dans le bâti SE 112.

Contenu didactique / Essais

- apprentissage concernant une poutre cantilever
- application de la méthode des sections et des conditions déquilibre de la statique afin de calculer les réactions dappui pour
- -- charge ponctuelle
- -- charge linéaire
- -- charge mobile
- détermination des réactions internes soumises à une charge statique
- -- courbe des efforts tranchants
- -- courbe des moments de flexion
- détermination des lignes dinfluence soumises à une charge mobile
- comparaison des réactions dappui calculées et mesurées pour la charge statique et la charge mobile

Les grandes lignes

- poutre articulée avec deux bras et une poutre de suspension comme exemple dun pont type
- affichage direct des réactions dappui
- lignes dinfluences pour différentes conditions de charge

Les caracteristiques techniques

Poutre

longueur totale: 1220mmlongueur du bras: 503mm

- longueur de la poutre de suspension: 250mm

Dynamomètre à cadran: de ±50N

Poids

- 24x 5N

- 12x 1N

- charge mobile: 10+20N

Dimensions et poids

Lxlxh: 1170x480x178mm (système de rangement)

Poids: env. 40kg (total)

Liste de livraison

1 poutre cantilever (2 bras + 1 poutre de suspension)

4 appuis avec dynamomètre à cadran

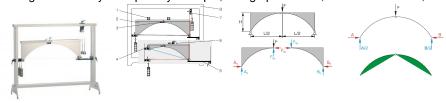
1 charge mobile

1 jeu de poids

1 système de rangement avec mousse de protection

1 documentation didactique

Date d'édition : 02.11.2025


Accessoires disponibles et options SE112 - Bâti de montage

Produits alternatifs SE110.17 - Arc à trois articulations

Ref: EWTGUSE110.17

SE 110.17 Arc à trois articulations (Réf. 022.11017)

Chargement arc symétrique/asymétrique, charge ponctuelle, linéaire ou mobile, Nécessite bâti SE 112

Les ponts sont souvent construits sous la forme darcs à trois articulations.

Cette construction convient particulièrement lorsque lon dispose principalement de matériaux de construction résistants à la compression.

Une poussée horizontale se produit dans larc au niveau des appuis.

Cette poussée sappelle la poussée de larc.

Elle permet essentiellement de créer des petits moments de flexion dans larc tout comme dans le cas dune poutre avec deux supports ayant la même portée.

Pour cela, une force de compression longitudinale non négligeable agit dans larc.

Un arc à trois articulations comporte une poutre courbe montée sur deux paliers de butée et contenant ce que lon appelle une articulation à la clé le plus souvent située au sommet.

Les articulations au niveau des deux paliers de butée absorbent des forces verticales et horizontales et sont appelées articulations aux naissances.

Leur ligne de jonction est la ligne des naissances.

Le système est isostatique en raison de larticulation à la clé.

Le SE 110.17 comporte trois arcs partiels, deux longs et un court, reliés de manière articulée.

Lensemble peut former un arc à trois articulations symétrique ou asymétrique.

Larc à étudier peut être chargé dune charge ponctuelle, linéaire ou mobile.

Des poids compensent les réactions dappui dune articulation aux naissances et permettent deffectuer une comparaison entre les valeurs calculées et les valeurs réellement mesurées.

Les pièces dessai sont logées de manière claire et protégées dans un système de rangement.

Lensemble du montage expérimental est monté dans le bâti SE 112.

Contenu didactique / Essais

- apprentissage concernant des arcs à trois articulations (asymétrique et symétrique)
- application de la méthode des sections et des conditions déquilibre de la statique afin de calculer les réactions dappui pour
- -- charge ponctuelle, charge linéaire, charge mobile
- étude de linfluence de la charge sur la poussée horizontale dans les appuis
- détermination des lignes dinfluence pour les appuis soumis à une charge mobile
- comparaison des réactions dappui calculées et mesurées pour la charge statique et la charge mobile

Les grandes lignes

- arc isostatique à trois articulations
- arc symétrique ou asymétrique
- différentes conditions de charge: charge ponctuelle, charge linéaire, charge mobile

Les caracteristiques techniques

Date d'édition: 02.11.2025

Arcs en aluminium

- 2x longs: 480mm, longueur totale de larc: 960mm
- 1x court: 230mm, longueur totale de larc: 710mm

- hauteur de larc: 250mm

Poids

- 4x 1N (suspentes)

- 36x 1N

- 16x 5N

- charge mobile: 10N+20N

Dimensions et poids

Lxlxh: 1170x480x178mm (système de rangement)

Poids: env. 56kg (total)

Liste de livraison

3 parties darc

1 charge mobile

2 appuis

1 jeu de poids

1 jeu daccessoires

2x système de rangement avec mousse de protection

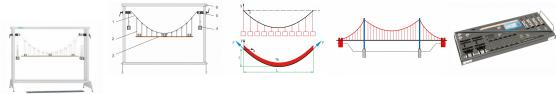
1 documentation didactique

Accessoires disponibles et options

SE112 - Bâti de montage

Produits alternatifs

SE110.12 - Lignes dinfluence au niveau de la poutre cantilever


SE110.16 - Arc parabolique

SE110.18 - Forces au niveau dun pont suspendu

Ref: EWTGUSE110.18

SE 110.18 Forces au niveau d?un pont suspendu (Réf. 022.11018)

Force câble porteur, démonstration des moments de courbure dans la route, Nécessite bâti SE 112

Les ponts suspendus font partie des plus anciennes formes de construction de pont.

Lélément porteur est un câble flexible.

Puisque les câbles peuvent absorber des forces de traction élevées lorsque le poids propre est petit, les ponts suspendus peuvent être montés avec de grandes portées.

Cela a permis de couvrir de plus grandes distances sans piliers de soutien, par ex. dans le cas des ravins.

La courbure des câbles porteurs du pont suspendu est parabolique puisque les poids est fixé aux câbles porteurs à des intervalles constants relativement petits au-dessus des câbles verticaux.

Le montage expérimental SE 110.18 représente un pont suspendu.

Le pont se compose de deux câbles porteurs parallèles et dun tablier suspendu.

Des suspentes en U servent de câbles verticaux.

Elles sont placées à des intervalles réguliers au niveau des câbles porteurs et maintiennent le tablier. SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 02.11.2025

Les poulies de renvoi agissent comme des pylônes.

Le tablier agit comme une charge linéaire sur les câbles porteurs et peut être chargé de poids supplémentaires.

Deux tabliers de différente rigidité sont disponibles: un tablier rigide et un tablier élastique.

Le tablier rigide est équipé dune articulation au centre.

Larticulation permet dobserver les moments internes dans le tablier qui apparaissent lorsque la charge est inégale et fait plier ce dernier.

Le montage expérimental sans tablier permet de traiter des câbles suspendus librement.

Pour étudier des câbles à poids propre différent, des charges ponctuelles additionels sont directement appliqués aux câbles porteurs.

Les forces de traction dans les câbles porteurs sont déterminées à laide des poids.

La courbure maximale est mesurée à laide d'une règle graduée.

La règle graduée est fixée à une traverse.

Les pièces dessai sont logées de manière claire et protégée dans un système de rangement.

Lensemble du montage expérimental est monté dans le bâti SE 112.

Contenu didactique / Essais

- apprentissage concernant un pont suspendu
- -- soumis au poids propre
- -- soumis à un poids supplémentaire
- -- soumis à une charge répartie de manière uniforme (charge linéaire)
- -- soumis à une charge répartie de manière inégale (charge ponctuelle)
- calcul de la force du câble porteur
- comparaison des valeurs calculées et des valeurs mesurées de la force du câble porteur
- observation de leffet des moments internes dans le tablier lorsque la charge est inégale
- -- tablier rigide
- -- tablier élastique
- détermination de la ligne de chaînette dun câble suspendu librement

Les grandes lignes

- tablier rigide ou élastique pour le pont suspendu
- différentes conditions de charges possibles: charge ponctuelle ou linéaire
- ligne de chaînette dun câble suspendu librement

Les caractéristiques techniques

Pont suspendu

- portée: env. 1050mm
- courbure du câble porteur: env. 325mm
- nombre de câbles porteurs: 2
- étrier: 12, longueurs graduées

Tablier rigide, en deux parties avec articulation, bois

- poids propre: 5,5N

- Lxlxh: 100x70x10mm

Tablier élastique, PVC

- poids propre: 3N

- Lxlxh: 100x70x3mm

Poids

- 16x 1N (suspentes)
- 12x 1N (étriers)
- 24x 1N
- 28x 5N

Dimensions et poids

Lxlxh: 1170x480x178mm (système de rangement)
SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 02.11.2025

Poids: env. 37kg (total)

Liste de livraison

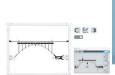
2 câbles porteurs

- 1 jeu d'étriers pour les tabliers
- 1 tablier, rigide
- 1 tablier, élastique
- 2 poulies de renvoi avec fixation
- 1 traverse avec éléments de serrage
- 1 règle graduée
- 1 jeu de poids
- 1 système de rangement avec mousse de protection
- 1 documentation didactique

Accessoires disponibles et options

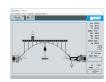
SE112 - Bâti de montage

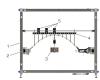
Produits alternatifs


SE110.12 - Lignes dinfluence au niveau de la poutre cantilever

SE110.16 - Arc parabolique

SE110.17 - Arc


Ref: EWTGUSE200.03


SE 200.03 MEC Pont en arc parabolique pour SE 200 (Réf. 022.20003)

Un pont à arc se compose dun arc qui soit soutient le pont par le bas, soit le maintient par le haut.

Les ponts à arc sont utilisés pour franchir de courtes distances.

Le SE 200.03 permet, en association avec dautres accessoires de la MEC Line, le montage expérimental intelligent et assisté numériquement dun pont à arc.

Lessai comprend un pont à arc avec un arc de soutien sous la route.

Les accessoires intelligents disponibles sont les appuis, les charges et la mesure de la distance.

Le dispositif dessai est monté dans le bâti de montage SE 200.

La transmission des données et lalimentation électrique des composants intelligents seffectuent directement et sans fil par le bâti de montage en acier inoxydable.

Le système à clic assure un enclenchement facile des composants.

La forme de larc est parabolique.

Les supports de la route pour larc sont amovibles.

Une charge peut être posée respectivement à onze positions de la route.

De même, il est possible détudier une charge mobile.

La combinaison de plusieurs éléments de charge permet de générer des charges linéaires.

Il est également possible dutiliser la charge linéaire des accessoires en option.

La route est flexible. Un palier de pont peut être utilisé comme palier fixe ou libre.

Dans les essais, les forces sur les appuis ainsi que le déplacement sur le palier libre ou les supports sont enregistrés par une mesure de la distance.

Les résultats sont directement affichés sur les composants intelligents et dans le logiciel GUNT sous forme de valeur de mesure.

La détection exacte de la position des charges sur la route se fait à laide dun code binaire (code Gray).

Le logiciel GUNT identifie la position et lemplacement des charges utilisées et réagit dynamiquement aux SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 02.11.2025

changements.

Les forces darc et langle sur les appuis sont calculés.

Lévaluation des valeurs de mesure se fait en temps réel.

Les composants sont disposés de manière ordonnée et bien protégés dans un système de rangement.

Contenu didactique/essais

- mesure des forces darc sur un pont à arc non chargé chargé
- mesure des forces dappui en fonction de lapplication dune charge du pont à arc
- effet dune charge mobile
- accessoires de la MEC Line combinables de façon modulaire pour des montages et des extensions des essais

GUNT Media Center, développement des compétences numériques

- acquisition dinformations sur des réseaux numériques
- cours dapprentissage en ligne avec connaissances de base, présentation détaillée du déroulement des essais et animations parlantes
- succès dapprentissage assuré grâce aux feuilles de travail numériques

Les grandes lignes

- -montage sans fil dun pont à arc avec des accessoires intelligents et communicants
- appui pour mesurer la force et le déplacement
- système à clic pour un montage et une modification faciles
- identification automatique dans le logiciel GUNT et attribution des charges en option

Caractéristiques techniques

Sections de pont

- 11 pièces
- logement chacun pour positionner la charge
- section de pont centrale avec logement pour la charge verticale

Longueur de la route: 658mm

Dimensions et poids

Lxlxh: 800x600x200mm (système de rangement)

Poids: env. 18kg (total)

Nécessaire pour le fonctionnement

Accessoires de la série GUNT MEC Line, PC avec Windows recommandé

Liste de livraison

- 1 pont à arc
- 1 logiciel GUNT
- 1 documentation didactique
- 1 accès en ligne au GUNT Media Center
- 1 système de rangement avec mousse de protection

Accessoires

reauis

SE 200 MEC - Cadre numérique & intelligent

2x

SE 200.21 MEC - Appui

min. 1, max. 2

SE 200.25 MEC - Charge

en option

max. 1

Date d'édition : 02.11.2025

SE 200.23 MEC - Mesure de la distance

max 1

SE 200.24 MEC - Charge verticale

max. 1

SE 200.26 MEC - Charge linéaire