

Date d'édition: 02.11.2025

Ref: EWTGUSE110.20

SE 110.20 Déformation des bâtis (Réf. 022.11020)

Déformation élastique d'un bâti isostatique / hyperstatique, Nécessite bâti SE 112

Un bâti est une poutre inclinée aux angles rigides à la flexion formant un gabarit despace libre.

Cela signifie quil fait face à une portée tout en formant une hauteur.

Le SE 110.20 comprend un bâti en U type, utilisé p. ex. dans la construction de halls.

Une extrémité est encastrée, lautre extrémité pouvant être montée de manière libre.

Si lextrémité non encastrée reste libre, le bâti isostatique est étudié.

Un palier libre au niveau de lextrémité non encastrée génère un bâti hyperstatique.

Le bâti est chargé des poids. Les points d'application de la charge peuvent être déplacés.

Les déformations du bâti soumis à une charge sont enregistrées par deux comparateurs à cadran.

Lapplication de différentes méthodes (théorie de lélasticité du 1^er^ ordre, principe de superposition de la mécanique et principe du travail virtuel) permet de déterminer les courbes du moment de flexion élastique pour les bâtis isostatiques et hyperstatiques.

Ces courbes et une table dintégrales permettent détablir léquation différentielle de la courbe de flexion élastique.

Les déplacements et la force d'appui au niveau du palier libre sont calculés à partir de la courbe de flexion élastique et de ses dérivations.

Un deuxième bâti en S permet de démontrer que les différentes méthodes peuvent être appliquées sur tout type de bâti.

Les pièces dessai sont logées de manière claire et protégées dans un système de rangement. Lensemble du montage expérimental est monté dans le bâti SE 112.

Contenu didactique / Essais

- rapport entre la charge et la déformation sur le bâti
- différences entre le bâti isostatique et le bâti hyperstatique
- apprentissage de la théorie de lélasticité du 1^er^ ordre pour les systèmes isostatiques et hyperstatiques
- application du principe de superposition de la mécanique
- application du principe de travail virtuel aux bâtis isostatiques et hyperstatiques
- -- détermination dune déformation à laide du principe des forces virtuelles
- -- détermination dune charge à laide du principe du déplacement virtuel
- comparaison des déformations calculées et mesurées

Les grandes lignes

- déformation élastique dun bâti isostatique ou hyperstatique soumis à une charge ponctuelle
- bâti en U et en S
- principe du travail virtuel pour le calcul de la déformation et de la réaction dappui avec un système hyperstatique

Les caracteristiques techniques Bâti en acier

Date d'édition : 02.11.2025

section: 600mmsection: 20x10mmen U: 600x600mmen S: 600x600mm

Comparateurs à cadran

- plage de mesure: 0...20mm

- graduation: 0,01mm

Poids

- 2x 1N (suspentes)

- 8x 1N

- 6x 5N

Dimensions et poids

Lxlxh: 1170x480x178mm (système de rangement)

Poids: env. 34kg (total)

Liste de livraison

2 bâtis (1 en U, 1 en S)

2 colonnes d'encastrement (1 longue, 1 courte)

1 appui

1 jeu de poids avec crochets mobiles

1 poulie de renvoi avec fixation

1 câble

2 comparateurs à cadran avec support

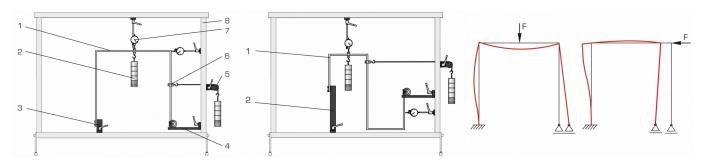
1 système de rangement avec mousse de protection

1 documentation didactique

Accessoires disponibles et options

SE112 - Bâti de montage

Catégories / Arborescence


Techniques > Mécanique > Résistance des matériaux > Déformations élastiques

Systèmes Didactiques s.a.r.l.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 02.11.2025

Date d'édition: 02.11.2025

Options

Ref: EWTGUSE112

SE 112 Bâti de montage pour la gamme SE 110.xx (Réf. 022.11200)

Montages simples, clairs pour des essais de statique, de résistance des matériaux, de dynamique

Le bâti de montage SE 112 permet deffectuer des montages expérimentaux clairs et simples en rapport avec les domaines de la statique, de la résistance des matériaux et de la dynamique.

Le SE 112 se compose de profilés en acier qui sont vissés à un bâti de montage.

Deux pieds latéraux garantissent une position stable.

Le montage du bâti à partir de différents éléments seffectue facilement et rapidement, ce qui requiert peu de manipulations.

Les grandes lignes

- bâti pour les montages expérimentaux relatifs à la statique, la résistance des matériaux et la dynamique

Les caractéristiques techniques

Bâti de montage en profilés en acier

- ouverture du bâti lxh: 1250x900mm
- largeur des rainures du profilé: 40mm

Dimensions et poids

Lxlxh: 1400x400x1130mm (monté) Lxlxh: 1400x400x200mm (non monté)

Poids: env. 32kg

Liste de livraison

- 1 bâti de montage en pièces détachées
- 1 jeu de vis avec clé pour vis à six pans creux
- 1 mode demploi

Accessoires disponibles et options

Date d'édition: 02.11.2025

WP300.09 - Chariot de laboratoire

en option Conditions déquilibre

SE 110.50 Câble soumis au poids propre

SE 110.53 Équilibre dans un système plan isostatique

Ponts, poutres, arcs

SE 110.12 Lignes dinfluence au niveau de la poutre cantilever

SE 110.16 Arc parabolique

SE 110.17 Arc à trois articulations

SE 110.18 Forces au niveau dun pont suspendu

Forces et déformation dans un treillis

SE 110.21 Forces dans différents treillis plans

SE 110.22 Forces dans un treillis hyperstatique

SE 110.44 Déformation dun treillis

Déformations élastiques et permanentes

SE 110.14 Courbe de flexion élastique dune poutre

SE 110.20 Déformation des bâtis

SE 110.29 Torsion de barres

SE 110.47 Méthodes de détermination de la courbe de flexion élastique

SE 110.48 Essai de flexion, déformation plastique

Stabilité et flambement

SE 110.19 Étude de problèmes de stabilité simples

SE 110.57 Flambement de barres

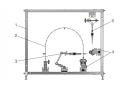
Vibrations sur une poutre en flexion

SE 110.58 Vibrations libres sur une poutre en flexion

Produits alternatifs

Ref: EWTGUSE200.09

SE 200.09 MEC Déformation des bâtis pour SE 200 (Réf. 022.20009)


Mesure de la déformation pour différentes charges et différents types d'appui

Un bâti est une poutre inclinée aux angles résistants à la flexion, formant ce que lon appelle un gabarit. Les bâtis sont utilisés sous différentes formes et peuvent être fabriqués en différents matériaux, par exemple en métal, en bois ou en matériaux composites.

Le SE 200.09 permet, en association avec dautres accessoires de la MEC Line, un montage expérimental intelligent, assisté numériquement, pour létude de bâtis en matériau composite.

La détermination des propriétés des matériaux seffectue sur une poutre en porte-à-faux.

Pour les essais, on dispose dun bâti en U typique, tel quil est utilisé dans la construction de halles, et dun bâti en

Date d'édition: 02.11.2025

forme darc.

Les appuis isostatique et bâti hyperstatique peuvent être étudiés sur les deux formes de bâti.

Lapplication dune charge du bâti est réalisée par une charge verticale SE 200.24 ou lunité de charge SE 200.22. Il existe plusieurs points dapplication de la charge.

Les déformations peuvent être enregistrées avec une mesure de la distance numériques, le SE 200.23. En appliquant différents procédés: loi de lélasticité du 1er ordre, principe de superposition de la mécanique et principe du travail virtuel, les courbes des moments de flexion sont déterminées pour le bâti isostatique et hyperstatique.

Léquation différentielle de la courbe de flexion élastique est établie à partir de ces évolutions et dune table dintégrales (table de couplage).

La courbe de flexion élastique et ses dérivées permettent de calculer les déplacements et la force dappui sur le palier libre.

Le logiciel GUNT identifie les composants utilisés et réagit dynamiquement aux modifications.

Lévaluation des valeurs de mesure se fait en temps réel.

Les composants sont disposés de manière ordonnée et bien protégés dans un système de rangement.

Contenu didactique/essais

- rapport entre lapplication dune charge et la déformation sur le bâti
- différences entre un bâti isostatique ou un bâti hyperstatique
- loi délasticité pour les systèmes dappui isostatique et hyperstatique
- application du principe de superposition de la mécanique
- application du principe du travail virtuel au bâti isostatique et hyperstatique
- accessoires de la MEC Line combinables de façon modulaire pour des montages et des extensions des essais

GUNT Media Center, développement des compétences numériques

- acquisition dinformations sur des réseaux numériques
- cours dapprentissage en ligne avec connaissances de base, présentation détaillée du déroulement des essais et animations parlantes
- succès dapprentissage assuré grâce aux feuilles de travail numériques

Les grandes lignes

- montage sans fil avec des accessoires intelligents et communicants
- déformation élastique dun bâti isostatique et le bâti hyperstatique sous charge ponctuelle
- bâti en U en forme darc en matériau composite
- poutre en porte-à-faux pour déterminer les propriétés du matériau
- système à clic pour un montage et une modification faciles
- identification automatique dans le logiciel GUNT

Caractéristiques techniques

Bâti

- en U
- en forme darc
- poutre en porte-à-faux, détermination des propriétés du matériau et de la forme
- matériau: profilés plats en matériau composite (acier à ressort/caoutchouc/acier à ressort, inoxydable)

Appuis

- palier fixe
- palier libre

Déformation dans le palier libre: jusquà 25mm

Dimensions et poids

Lxlxh: 800x600x200mm (système de rangement)

Poids: env. 19kg (total)

Nécessaire pour le fonctionnement

Accessoires de la série GUNT MEC Line, PC avec Windows recommandé SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition : 02.11.2025

Liste de livraison

2 bâtis

1 poutre en porte-à-faux

1 jeu de poids

1 documentation didactique

1 accès en ligne au G