

Date d'édition: 03.11.2025

Ref: P1.5.3.4

P1.5.3.4 Oscillations de torsion forcées harmoniques et chaotiques - tracé avec CASSY

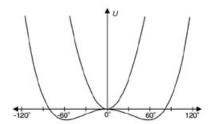
Pour étudier le passage des oscillations forcées harmoniques aux oscillations chaotiques, le moment de rappel linéaire exercé sur le pendule de torsion est modifié de façon adéquate au cours de l'expérience P1.5.3.4 en ajoutant une masse marquée supplémentaire.

Le moment de rappel correspond désormais à un potentiel ayant deux minima, c'est-à-dire deux positions d'équilibre.

Si le pendule est excité à fréquence constante, il peut osciller autour du minimum gauche, du minimum droit ou entre les deux minima.

Pour des fréquences fixées, on ne peut pas prévoir quand le pendule va changer de minimum. On dit que le pendule oscille chaotiquement.

Équipement comprenant :


- 1 346 00 Pendule de Pohl
- 1 521 546 Alimentation CC 0...16 V/0...5 A
- 1 562 793 Adaptateur secteur pour pendule de Pohl
- 1 524 013 Sensor-CASSY 2
- 1 524 220 CASSY Lab 2
- 1 524 082 Capteur de rotation S
- 1 531 120 Multimètre LDanalog 20
- 2 500 441 Câble de connexion 19 A, 100 cm, rouge
- 2 500 442 Câble de connexion 19 A, 100 cm, bleu
- 1 En complément : PC avec Windows XP/Vista/7/8/10 (x86 ou x64)

Catégories / Arborescence

Sciences > Physique > Expériences pour le supérieur > Mécanique > Etude des oscillations > Appareil de Pohl Formations > CPGE > Mecanique

Date d'édition: 03.11.2025

Options

Ref: 34600

Pendule de torsion de Pohl, oscillations libres, amorties, forcées, résonance

Avec support pour capteur de rotation angulaire 524082

Pour étudier les oscillations libres plus ou moins amorties (régime pseudo-périodique, régime apériodique, régime critique) et les oscillations forcées (courbes de résonance, déphasage entre bras excitateur et disque résonateur).

Système oscillant formé d'un disque sur roulement à billes relié au bras excitateur par un ressort spiral.

Le bras excitateur est mis en mouvement à une vitesse réglable (grossièrement et finement) par un moteur électrique avec une bielle.

Un frein électromagnétique à courants de Foucault permet de régler l'effet d'amortissement.

Avec échelle circulaire et pointeurs sur l'excitateur et le résonateur.

Convient aussi pour la projection d'ombres.

Livré avec moteur électrique monté sur plaque support.

Caractéristiques techniques : Fréquence propre : env. 0,5 Hz

Fréquence d'excitation : 0 ... 1,3 Hz (réglable en continu) Connexions : Moteur : 24 V CC, 0,7 A, par douilles de 4 mm

Frein à courants de Foucault : max. 2 A (env. 0 ... 24 V CC par douilles de 4 mm)

Dimensions: 40 cm x 14 cm x 27 cm

Masse: 4 kg

Date d'édition: 03.11.2025

Ref: 521546

Alimentation CC 0 ... 16 V, 0 ... 5 A

Alimentation CC, comme source de tension constante avec limitation de courant et comme source de courant constant avec limitation de tension, permet un fonctionnement en parallèle et en série de plusieurs appareils. Convient très bien pour les travaux pratiques avec des élèves de tous âges grâce à l'isolation sécurisée conformément à la réglementation BG/GUV-SI 8040.

Caractéristiques techniques :

- Tension de sortie : 0 ... 16 V, réglable en continu
- Courant de sortie : 0 ... 5 A, réglable en continu
- Résiste au court-circuit grâce à la limitation de courant
- Connexion par douilles de sécurité de 4 mm
- Affichage : 2 écrans à 3 chiffres, pour le courant et la tension
- Tension secteur: 230V/50Hz et 115V/60Hz, commutable
- Dimensions: 27cm x 15cm x 13cm

- Masse : 5,8kg

Ref: 562793

Alimentation enfichable 24V cc 1000mA, fiche 4 mm

Caractéristiques techniques :

Primaire: 230 V/50 Hz Secondaire: max. 24 V CC, 1000 mA

Connexion : fiches de sécurité de 4 mm

Date d'édition: 03.11.2025

Ref: 524013

Sensor-CASSY 2, Interface PC USB Nécessite une licence du logiciel CASSY 2

C'est une interface connectable en cascade pour l'acquisition de données.

Pour le branchement au port USB d'un ordinateur, à un autre module CASSY ou au CASSY-Display (524 020USB) Sensor-CASSY(524 010), Sensor-CASSY 2 et Power-CASSY (524011USB) peuvent être connectés en cascade mixte

Isolée galvaniquement en trois points (entrées de 4 mm A et B, relais R)

Mesure possible simultanément aux entrées de 4 mm et slots pour adaptateurs de signaux (système à quatre canaux)

Avec la possibilité de monter en cascade jusqu'à 8 modules CASSY (pour multiplier les entrées et sorties)

Avec la possibilité d'avoir jusqu'à 8 entrées analogiques par Sensor-CASSY par l'intermédiaire des adaptateurs de signaux

Avec reconnaissance automatique (plug & play) des adaptateurs par CASSY Lab 2 (524 220)

Commandée par micro-ordinateur avec le système d'exploitation CASSY (facilement actualisable à tout instant via le logiciel pour l'optimisation des performances)

Utilisable au choix comme appareil de table à inclinaison variable ou comme appareil de démonstration (aussi dans le cadre d'expérimentation CPS/TPS)

Alimentée en tension 12 V CA/CC par une fiche femelle ou un module CASSY adjacent

Informations sur le développeur, LabVIEW et MATLAB; les pilotes sont disponibles sur Internet

Caractéristiques techniques :

5 entrées analogiques

2 entrées tension analogiques A et B sur douilles de sécurité de 4 mm (isolées galvaniquement) Résolution : 12bits

Gammes de mesure : $\pm 0,1/\pm 0,3/\pm 1/\pm 3/\pm 10/\pm 30/\pm 100/\pm 250V$ Erreur de mesure : $\pm 1\%$ plus 0,5% de la pleine échelle

Résistance d'entrée : 1MO

Taux d'échantillonnage : jusqu'à 1MHz par entrée

Nombre de valeurs : quasiment illimité (suivant le PC) jusqu'à 10 000valeurs/s, pour un taux de mesure plus

élevé max. 200 000 valeurs

Pré-trigger : jusqu'à 50 000valeurs par entrée

1 entrée courant analogique A sur douilles de sécurité de 4 mm (alternativement à l'entrée tension A)

Gammes de mesure : $\pm 0.03/\pm 0.1/\pm 0.3/\pm 1/\pm 3A$

Erreur de mesure : erreur de mesure de la tension plus 1% Résistance d'entrée : < 0,50

Taux d'échantillonnage : jusqu'à 1MHz par entrée

Pour de plus amples informations, voir les entrées de tension

2 entrées analogiques sur slot pour adaptateurs de signaux A et B (raccordement possible de tous les capteurs et adaptateurs CASSY)

Gammes de mesure : ±0,003/±0,01/±0,03/±0,1/±0,3/±1V

Résistance d'entrée : 10kO

Taux d'échantillonnage : jusqu'à 500kHz par entrée Pour de plus amples informations, voir les entrées de tension.

Les caractéristiques techniques varient en fonction de l'adaptateur enfiché. La reconnaissance des grandeurs et gammes de mesure est assurée automatiquement par CASSY Lab 2 dès qu'un

La reconnaissance des grandeurs et gammes de mesure est assurée automatiquement par CASSY Lab 2 dès qu'un adaptateur est enfiché.

4 entrées timer avec compteurs de 32 bits sur slot pour adaptateurs de signaux (par ex. pour l'adaptateur GM, l'adaptateur timer ou le timer S)

SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 03.11.2025

Fréquence de comptage : max. 1MHz Résolution temporelle : 20ns

5 affichages de l'état par LED pour les entrées analogiques et le port USB

Couleurs : rouge et vert, suivant l'état Clarté : ajustable

1 relais commutateur (indication de la commutation par LED) Gamme: max. 250 V / 2 A

1 sortie analogique (indication de la commutation par LED, par ex. pour un aimant de maintien ou une alimentation pour l'expérimentation)

Tension ajustable: max. 16V / 200mA (charge =80O)

12 entrées numériques (TTL) sur slots A et B pour adaptateurs de signaux (actuellement utilisées seulement pour la reconnaissance automatique de l'adaptateur)

6 sorties numériques (TTL) sur slots A et B pour adaptateurs de signaux (actuellement utilisées seulement pour la commutation automatique de la gamme de mesure d'un adaptateur)

1 port USB pour la connexion d'un ordinateur

1 bus CASSY pour la connexion d'autres modules CASSY

Dimensions: 115mm x 295mm x 45mm

Masse: 1,0kg

Matériel livré : Sensor-CASSY 2

Logiciel CASSY Lab 2 sans code d'activation avec aide exhaustive (peut être utilisé 16 fois gratuitement, ensuite, en version de démonstration)

Câble USB

Adaptateur secteur 230 V, 12 V/1,6 A

Ref: 524220

CASSY Lab 2 Licence Département ou établissement

Mises à jour gratuites

Version perfectionnée du logiciel réussi CASSY Lab pour le relevé et l'exploitation des données avec une aide exhaustive intégrée et de nombreux exemples d'expériences préparés.

- Supporte jusqu'à 8 modules Sensor-CASSY 2, Sensor-CASSY et Power-CASSY à un port USB ou série
- Supporte des modules Pocket-CASSY, Mobile-CASSY ou Power Analyser CASSY à différents ports USB
- Supporte le joulemètre et wattmètre et les instruments de mesure universels de Physique, Chimie et Biologie
- Supporte tous les adaptateurs de signaux CASSY
- Supporte en supplément de nombreux appareils au port série (par ex. VidéoCom, détecteur de position à IR, balance)
- Facilité d'emploi grâce à la reconnaissance automatique des modules CASSY et des adaptateurs qu'il suffit de brancher pour pouvoir les utiliser (plug & play) : représentation graphique, activation des entrées et sorties par simple clic et paramétrage automatique spécifique à l'expérience considérée (en fonction de l'adaptateur de signaux enfiché)
- Affichage des données sur des instruments analogiques/numériques, dans des tableaux et/ou des diagrammes (avec la désignation des axes au choix)
- Relevé des valeurs manuel (par appui sur une touche) ou automatique (réglage possible de l'intervalle de temps, du temps de mesure, du déclenchement, d'une condition de mesure supplémentaire)
- Exploitations variées telles que par ex. diverses adaptations (droite, parabole, hyperbole, fonction exponentielle, adaptation arbitraire), intégrale, inscription d'annotations sur le diagramme, calculs quelconques de formules, dérivation, intégration, transformation de Fourier SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 03.11.2025

- Format de données XML pour les fichiers d'expériences (importe aussi les fichiers d'expériences réalisés avec CASSY Lab 1)
- Exportation facile des données de mesure et des diagrammes par le biais du presse-papiers
- Plus de 150 exemples d'expériences dans le domaine de la physique, chimie et biologie, accompagnés d'une description détaillée
- Représentation graphique du CASSY, du boîtier du capteur et de l'affectation des broches lors du chargement d'un fichier de test
- Mises à jour et versions de démonstration gratuites disponibles sur Internet
- Matériel prérequis: Windows XP/Vista/7/8/10/11 (32+64 bits), port USB libre (appareils USB) ou port série libre (appareils série), support des processeurs multi-cores

Ref: 524082

Capteur optique de rotation S

Pour la mesure sans frottement de mouvements de rotation, de déplacements linéaires, d'amplitudes, de périodes et de fréquences de rotation avec le Sensor-CASSY (524013), le Pocket-CASSY (524006, 524018) ou l'Instrument de mesure universel Physique (531835).

Caractéristiques techniques :

Grandeurs mesurées : angle, distance, amplitude et période d'oscillation, fréquence de rotation

Grandeurs dérivées : vitesse, accélération (avec CASSY Lab) Gamme de mesure : sans guide mécanique (capteur incrémentiel)

Résolution angulaire : 0,18°

Résolution de déplacement : 0,08 mm Résolution de temps : 0,001 s Résolution de fréquence : 0,001 Hz Axe : monté sur roulement à billes double

Matériel livré:

Capteur de rotation

Roue pour la mesure de déplacements linéaires

Tige pour la fixation du capteur au matériel support

Coupleur enfichable pour le montage sur plaque à réseau ou sur le moteur à air chaud

Date d'édition: 03.11.2025

Ref: 531120

Multimètre LDanalog 20

Instrument de mesure à haute capacité de charge,

avec dispositifs de sécurité intégrés protégeant l'appareil contre toute erreur de manipulation : spécialement conçu pour les expériences et les travaux pratiques.

L'instrument de mesure est protégé par deux diodes antiparallèles.

Arrêt automatique du fonctionnement avec piles au bout d'env. 45 minutes.

Caractéristiques techniques :

Tension continue: 0,1 V ... 300 V (8 gammes) Tension alternative: 3 V ... 300 V (5 gammes) Courant continu: 0,1 mA ... 3 A (6 gammes) Courant alternatif: 0,1 mA ... 3 A (6 gammes)

Résistance interne : 10MO Précision : classe 2-/3~

Zéro : à gauche/central (commutable)

Échelle à miroir : oui

Pile (incluse): 9 V/CEI 6F22 (68545ET5)

Capacité de surcharge/protection : F 3,15 A/300 V

Dimensions: 10 cm x 14 cm x 3,5 cm

Masse : 270 g

Produits alternatifs

Date d'édition: 03.11.2025

Ref: P1.5.3.1

P1.5.3.1 Oscillations de torsion libres - mesure avec le chronomètre manuel

Les oscillations de torsion de la forme

 $\ddot{o}(t) = \ddot{o}0 \cdot \cos \dot{u}t \cdot e^{21}$ avec $\dot{u} = \dot{u}0^2 - \ddot{a}^2$ $\dot{u}0$: fréquence propre du pendule de torsion

font l'objet de la expérience P1.5.3.1.

Pour faire la différence entre régime oscillatoire et régime amorti, on fait varier la constante d'amortissement et on cherche le courant IO correspondant au cas limite apériodique.

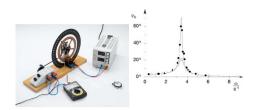
Dans le régime oscillatoire, on détermine la pulsation ù pour différents amortissements d'après la période d'oscillation T et la constante d'atténuation à l'aide du rapport

 $|\phi n+1/\phi n| = e^{21}$

entre deux amplitudes d'oscillation successives. La fréquence propre ù0 est calculée d'après la relation

 $\dot{u}^2 = \dot{u}0^2 - \ddot{a}^2$

Équipement comprenant :


- 1 346 00 Pendule de Pohl
- 1 521 546 Alimentation CC 0...16 V/0...5 A
- 1 313 27 Chronomètre manuel, 60s/0,2s
- 1 500 441 Câble de connexion 19 A, 100 cm, rouge
- 1 500 442 Câble de connexion 19 A, 100 cm, bleu

Date d'édition: 03.11.2025

Ref: P1.5.3.2

P1.5.3.2 Oscillations de torsion forcées - mesure avec le chronomètre manuel

Au cours de l'expérience P1.5.3.2, le pendule de torsion est amené à des oscillations de fréquence ù par un moment de torsion variant harmoniquement.

Pour représenter le comportement de résonance, les amplitudes doscillations déterminées pour différents amortissements sont portées en fonction de ù² et comparées avec la courbe théorique

 $\ddot{0}0 = M0/I \times 1/\dot{u}^2 - \dot{u}0^2)^2 + \ddot{a}^2 \cdot \dot{u}^2$

I : moment d'inertie du pendule de torsion

Équipement comprenant :

1 346 00 Pendule de Pohl

1 521 546 Alimentation CC 0...16 V/0...5 A

1 562 793 Adaptateur secteur pour pendule de Pohl

1 531 120 Multimètre LDanalog 20

1 313 27 Chronomètre manuel, 60s/0,2s

2 500 441 Câble de connexion 19 A, 100 cm, rouge

2 500 442 Câble de connexion 19 A, 100 cm, bleu

Ref: P1.5.3.3

P1.5.3.3 Oscillations de torsion libres - tracé avec CASSY

Les oscillations de torsion libres harmoniques de forme générale

 $\ddot{o}(t) = A \cdot e^{21} \sin(\dot{u}t + \ddot{o}')$

avec $\dot{u} = \dot{u}0^2 - \ddot{a}^2$

avec ù0 : fréquence propre du pendule de torsion

font l'objet de l'expérience P1.5.3.3.

L'étude s'effectue en fonction de la déviation initiale (0) et de la vitesse initiale ù(0).

On varie en outre la constante d'atténuation et on cherche le courant 10 correspondant au régime critique apériodique.

Date d'édition: 03.11.2025

Équipement comprenant :

1 346 00 Pendule de Pohl

1 521 546 Alimentation CC 0...16 V/0...5 A

1 524 013 Sensor-CASSY 2

1 524 220 CASSY Lab 2

1 524 082 Capteur de rotation S

1 500 441 Câble de connexion 19 A, 100 cm, rouge

1 500 442 Câble de connexion 19 A, 100 cm, bleu

1 En complément : PC avec Windows XP/Vista/7/8/10 (x86 ou x64)