

Date d'édition: 04.11.2025

Ref: P1.7.8.1

P1.7.8.1 Détermination de la vitesse de son dans des liquides

ondes ultrasoniques stationnaires comme un réseau optique

Dans lexpérience P1.7.8.1, on étudie la longueur d'onde dune onde ultrasonore stationnaire dans des liquides différents.

De plus, la fluctuation de densité dans un liquide est représentée par projection géométrique sur un écran et mesurée.

De plus, lexpérience représente leffet classique de Debye-Sears, qui se définie comme étant la diffraction dune onde optique dune lumière de laser sur un réseau de diffraction (produit par ultrason) dans un liquide. Ceci est la base des modulateurs acousto-optiques.

Équipement comprenant :

- 1 417 11 Générateur d'ultrasons 4 MHz
- 1 460 32 Banc d'optique à profil normalisé, 1 m
- 5 460 374 Cavalier 90/50 pour l'optique
- 1 471 791 Laser à diode, 635 nm, 1 mW
- 1 460 02 Lentille dans monture, f = +50 mm
- 1 460 25 Plateau pour prisme
- 1 477 02 Cuve en verre, 100 x 50 x 50 mm
- 1 460 380 Bras de rallonge
- 1 382 35 Thermomètre, -10...+50 °C/0,1 K
- 1 300 41 Tige 25 cm, 12 mm Ø
- 1 301 01 Noix Leybold
- 1 441 531 Écran
- 1 675 3410 Eau, pure, 5 l
- 1 672 1210 Glycérol, 99 %, 250 ml
- 1 671 9740 Éthanol, solvant, 250 ml [DANGER H225 H319]
- 1 673 5700 Chlorure de sodium, 250 g

Catégories / Arborescence

Sciences > Physique > Expériences pour le supérieur > Mécanique > Acoustique > Ultrason dans un milieu

Options

Date d'édition : 04.11.2025

Ref: 30041

Tige 25 cm, 12 mm de diamètre

En acier inox massif, résistant à la corrosion.

er inox

Caractéristiques techniques :

- Diamètre : 12 cm - Longueur : 25 mm

Ref: 30101 Noix Leybold

Pour attacher solidement et assembler des tiges et des tubes ainsi que pour fixer des plaques, ou encore servir de cavalier pour le petit banc optique (460 43).

Les éléments à fixer sont serrés par deux vis papillon dans le logement en forme de prisme.

Caractéristiques techniques :

Ouverture pour les tiges : 14 mmOuverture pour les plaques : 12 mm

Date d'édition: 04.11.2025

Ref: 38235

Thermomètre -10 à +50°C

Graduation: 0,1 K - Longueur 45 cm - Diamètre 10 mm

Avec échelle en verre opaque et capillaire.

Caractéristiques techniques :

Gamme de mesure : -10 ... +50 °C

Graduation: 0,1 K Longueur: 45 cm Diamètre: 10 mm Charge: toluène

Ref: 41711

Générateur à ultrasons 4MHz - 5MHz

Générateur d'ultrasons avec transducteur acoustique pour la production d'une oscillation mécanique continue (4Mhz - 5MHz) ou d'impulsions individuelles.

L'onde sonore transmise dans les liquides peut servir à étudier la propagation du son et avec l'établissement d'une onde stationnaire, aussi bien la diffusion de la lumière que la diffraction de la lumière cohérente peuvent être mises en évidence à l'appui des différences de densité de puissance de l'onde acoustique.

Ceci permet d'une part de déterminer avec une très grande précision la vitesse du son dans les liquides, d'autre part de montrer le phénomène de diffraction de la lumière selon Debye et Sears sur des réseaux acoustiques (modulateur acousto-optique).

Caractéristiques techniques :

Commandé par microprocesseur

Affichage de la fréquence : 4 chiffres, 20mm de haut

Mode de fonctionnement continu : Fréquence 4MHz ... 5MHz, réglable librement Amplitude environ 6V cc ... 20V cc

Mode de fonctionnement pulsé : Durée d'une impulsion 1µs Taux de répétition des impulsions 2kHz Sortie de

déclenchement TTL

Dimensions : Sonde acoustique : 36 mm x 31 mm x 31 mm (avec câble BNC de 0,7m) Tige 12 mm \varnothing Boîtier : 20

cm x 21 cm x 23cm Masse (totale) : 2,15 kg

Date d'édition : 04.11.2025

Ref: 441531

Ecran laqué blanc avec tige

En métal, laqué blanc, avec tige.

Caractéristiques techniques : Dimensions : 30 cm x 30 cm Diamètre de la tige : 10 mm

Ref: 46002

Lentille dans monture, f = + 50 mm

La distance focale est indiquée sur la monture ; sur tige.

Caractéristiques techniques : Distance focale : 50 mm Diamètre de la lentille : 40 mm Diamètre de la monture : 13 cm Diamètre de la tige : 10 mm

Date d'édition: 04.11.2025

Ref: 46025

Plateau pour prisme sur tige

Pour la fixation sur le banc d'optique de prismes, de cuvettes en verre ou autres objets similaires. Avec pince à ressort réglable et tige.

Caractéristiques techniques :

Diamètre : 60 mm

Écartement de la pince à ressort : max. 100mm

Diamètre de la tige: 10 mm

Ref: 46032

Banc d'optique à profil normalisé 1m

Pour démonstrations et expériences en laboratoire nécessitant une grande précision. Profilé triangulaire, avec pied et vis de réglage pour ajustage en trois points Extrémités pourvues d'alésages permettant la fixation d'éléments de jonction pour d'autres rails.

Caractéristiques techniques :

Longueur: 100 cm

Échelle : graduation en cm et en mm

Masse: 3,5 kg

Ref: 460374

Cavalier 90/50 pour banc d'optique à profil normalisé

Cavalier pour banc d'optique à profil normalisé.

Pour démonstrations et expériences en laboratoire de haute précision.

Profilé d'aluminium anodisé noir, traité mécaniquement pour une grande précision.

Pour des éléments optiques dans montures avec tige.

Caractéristiques techniques : Hauteur de la colonne : 90 mm

Date d'édition: 04.11.2025

Largeur du pied : 50 mm

Écartement pour les tiges : 10 à 14 mm Ø

Ref: 460380

Bras de rallonge pour le positionnement des composants optiques

Pour le positionnement des composants optiques au-dessus d'un banc d'optique à profil normalisé, fixation dans les cavaliers (460 370, 460 373, 460 374, 460 375).

Caractéristiques techniques : Prolongation : env. 85 mm

Écartement pour les tiges : 10 ... 14 mm Ø

Ref: 471791

Laser à diode, 635 nm, 1 mW

Source lumineuse monochromatique compacte, spécialement conçue pour des expériences sur l'interférence et la diffraction.

Du fait de la polarisation linéaire, ce laser permet aussi la réalisation d'expériences sur la rotation du plan de polarisation.

Avec tiges pour une utilisation sur le banc d'optique ou sur la plaque de base de l'interféromètre.

Caractéristiques techniques :

Laser de classe 2, selon DIN EN 60825-1: 2003

Puissance de sortie : max. 1 mW Longueur d'onde : 635 nm Diamètre du faisceau : 2 mm Divergence du faisceau : 0,5 mrad Polarisation linéaire : 100 : 1

Alimentation: 12 V, par adaptateur secteur 230 V; 12 V / 20 V (inclus au matériel livré)

Dimensions: 10 cm x 4 cm x 4 cm

Masse: 0,45 kg

Date d'édition : 04.11.2025

En option:

Attention : Le laser satisfait aux exigences de sécurité de la classe 2 définies dans la norme EN 60 825-1. Pour l'utilisation dans le cadre des travaux pratiques, veuillez respecter les consignes de sécurité specifiées dans le mode d'emploi ainsi que les directives nationales en vigueur.

Ref : 47702 Cuve en verre

Pour la réalisation d'expériences d'optique avec les liquides telles que, par ex. sur la polarisation, la dispersion.

Caractéristiques techniques :

Dimensions: 100 mm x 50 mm x 50mm

Épaisseur de paroi : 3 mm

Ref: 6719740

Ethanol, dissolvant, 250 ml

Ref : 6721210 Glycérol, 99 %, 250 ml

Date d'édition : 04.11.2025

Ref: 6735700

Chlorure de sodium, 250 g

Ref : 6753410 Eau pur, 5 I